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DYNAMIC BEHAVIOR OF ROTOR SURROUNDED BY OUTER CASTING 
 WITH SMALL  ANNULAR CLEARANCE 
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Abstract 

 Vibration response of a rotor surrounded by an outer casing is investigated. For the analysis, a six-degree-of-
freedom dynamic model of a shaft and disk is established using Lagrangian equations. While deriving the 
differential equations of motion, gyroscopic effect was taken into account and the solution of equations and response 
was obtained in MATLAB. Results demonstrate that rotor-stator rubbing may occur in a variety of forms and 
circumstances. It is shown that the inclusion of gyroscopic effect in the vibration model is useful in revealing the 
nature of vibration response. 
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Introduction 
For high thermal efficiency of turbo-machinery, the clearance between the rotating and stationary 
elements is kept very small. During malfunctioning, the stationary and rotating elements come in contact 
with each other resulting in partial or full rub. Rotor-casing rub has been the area of interest of many 
researchers. Much research has been carried out to understand the rotor/casing motion and to find ways 
to prevent serious damages resulting from the unstable rubbing vibration. Bazen [1] discussed the effects 
of friction and alignment on vibration response of interacting surfaces. The mathematical model presented 
by Currami [2] relates the rotor stiffness to parametric instability. Special attention was given by Choy et al 
[3] to determine the effects of casing stiffness, friction coefficient, mass imbalance and damping 
characteristics on the response. Large rub forces were experienced by increasing the casing stiffness and 
imbalance of the rotor. But damping tends to retard the initiation of backward whirl. It was proved by 
Zhang [4] that dry friction is the main cause of whirl during rubbing due to which instability occurs. Choy 
[5] observed the vibration response for the cases of blade loss and varying bearing clearances. Crandall 
[6] and Childs [7] investigated that large clearance between rotor and casing is needed for the occurrence 
of dry friction whirl and whip. Wu and Flowers [8] concluded that severity of rub depends on lubrication of 
interacting surfaces and acceleration of rotor. Goldman and Muszynska [9] showed that increase in 
temperature results in oscillation of rotor. Chu and Lu [10] concluded that rubbing results in increased 
stiffness of interacting surfaces. Feng et al [11] demonstrated that forward whirling of rotor results in the 
absence of friction and full rubbing behaves as backward whirling due to friction. It was demonstrated by 
Karpenko et al [12] that increased intensity of out-of-balance generates full annular rub. Qin et al [13] 
showed that chaotic motion is due to increase in the external damping of rotor-casing system. Jiang et al 
[14] studied the effects of different system parameters such as stiffness, damping and mass imbalance on 
the vibration behavior. Jiang [15, 16] included in his vibration model the effect of dry friction and predicted 
the self-excited vibrations of the rotor with the amplitude fluctuating around the critical value of the 
deflection. It is interesting to note from the above described survey that the details of early warning 
response characteristics prior to interaction of rotating and stationary elements are missing in the 
published literature.  
Effect of gravity on rotor in the analyses. In the present study, rotor considered is vertical and effect of 
gravity has been considered.  Gyroscopic effect has also been included, which, to the authors’ knowledge  
has not been taken into account in a vertical rotor system in the past conducted researches. In this paper, 
the dynamic response of a vertical flexible rotor before its interaction with the outer casing has been 
presented. The aim is to contribute to the development of efficient method for understanding the 
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behavior of a rotor system under the influence of certain system’s parameters which have been frequently 
used by the past researchers.  
 
Rotor-Stator Model 
The test rig (Figure-1) consisted of a flexible shaft vertically clamped, coupled with driving motor at the 
upper end through a flexible coupling and carrying a disk at the lower end. The shaft is rigidly connected 
to the foundation (outer casing) through a set of horizontal springs and viscous dampers at a distance of 
three quarter of shaft’s length from the upper end. A suitable gap of 10 mm is kept between disk and the 
outer casing. Eddy current type displacement transducers and accelerometers (ENDEVCO 100 mv/g) 
were used for obtaining the signals from the rotor/casing system. For data acquisition and analysis, a 
Fast Fourier Transform (FFT) analyzer made by Bruel & Kajeer was arranged from Directorate of Nuclear 
Power Engineering Reactor, Pakistan Atomic Energy Commission, and Islamabad, Pakistan.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure  1. Physical model of the system 
 
The dynamic motion of the system is described by six degrees-of-freedom as θx ,  θy , Xs1, Xs2, Ys1 and Ys2 
as shown in (Figure-2).  In the rigid pendulum like mode, the degrees-of-freedom are θx and  θy. Whereas 
Xs1, Xs2 and Ys1, Ys2 represent the degrees-of-freedom in the 1st shaft flexing mode and in the 2nd shaft 
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flexing mode respectively. The physical characteristics of the model  and complete nomenclature are 
given in the appendix. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure  2. Degrees-of-freedom of the model and gyroscopic effect 
 
Mathematical Model 
In developing the rotordynamic model, radial symmetry is assumed. i.e., Kx = Ky  and  Cx = Cy . Springs 
and Viscous dampers are assumed to be linear and all the deflections in the considered modes of 
vibrations are assumed to be very  small. Gyroscopic effect is taken into account by considering the 
turning motion of the disc about the X- and Y-axes during its rotation about the Z-axis (Figure-2) resulting 
from gyroscopic couple. Three modes of vibrations namely, the rigid pendulum like mode, 1st shaft flexing 
mode and the 2nd shaft flexing mode  are considered In the context of this paper, it is impractical to write 
all the steps involved in the derivation of differential equations of motion. However, for the purpose of 
clarity, the main steps are discussed here. 
The motion of the system is described in the reference frame OXYZ (Figure-1) using six generalized 
coordinates. Lagrange’s equations are used for obtaining differential equations of motion. 
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where  { } [ ]2121 ,,,,, ssxssy

T YYXXq θθ=        is the vector of generalized coordinates.     

T, U and D represent total kinetic energy, total strain energy and energy dissipation function of the system 
respectively. The equations are written in matrix form with M, C and K as mass, damping and stiffness 
matrices. The resulting linearized equations of motion are: 
 
 Mq.. + Cq. + Kq = Q                (2) 

 
where  C = CD  +  CG  
CD = damping matrix due to external viscous damping  
CG = damping matrix due to gyroscopic effect. 

 and      { } [ ] tiT emeiQ ωω 2. 0 ,0 , ,0 ,0 ,1 −=   
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  is the vector of forces due to mass imbalance  ‘me’ in the disc. 
The mass matrix M is given as 
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and the corresponding stiffness matrix K is 
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After substituting the Mass (M), Damping (C) and Stiffness (K) matrices, the Eqs.2 were solved in 
MATLAB to determine the global motion of the system and the radial displacement of the rotor was 
monitored to avoid rubbing with the outer casing. 
 
Results and Discussion 
Results are presented to illustrate the response of the system under gyroscopic effect. Some general 
patterns are noted from these results in relation to the effects of rotating speed, damping, stiffness and 
mass imbalance. These results can not be compared directly with the past references due to different 
configurations of physical models used by different researchers. The developed mathematical model 
represented by Eq.1 is first used to determine the natural frequencies of the system at zero rotor speed 
which are: ω1 = 25.64 rad/sec, ω2 = 163.77 rad/sec, ω3 = 926.14 rad/sec, ω4 = 25.64 rad/sec, ω5 = 163.77 
rad/sec and ω6 = 926.14 rad/sec. To confirm the gyroscopic effect , the response of the system was 
obtained at rotating speeds ranging from 0 to 100 rad/sec with and without inclusion of CG in the 
mathematical model keeping Kx = Ky =5000 N/m, Cx = Cy =10 N-sec/m and imbalance me = 87 gm-mm. It 
is shown in Figure-3  that at rotating speed of 25.64 rad/sec, i.e., at resonance, the radial displacement of 
rotor is 10 mm which is equal to the initial gap between the disk and the outer casing, whereas this 
displacement is about 6.5 mm in the absence of gyroscopic effect as indicated in Figure-4.  
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Figure  3. System response with  gyroscopic effect 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure  4. System response without gyroscopic effect 
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The corresponding motion orbits are shown in Figures- 5 and 6.It can be concluded that it is the 
gyroscopic effect which ensures the full rubbing of the rotor-disk system with the outer casing. Hence the 
effects of some other parameters on system’s response were studied by incorporating CG in the 
mathematical model. 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a)    Experimental 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b)   Computer predicted 
Figure  5. Motion orbit with gyroscopic effect 
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Figure 6. Computer predicted Motion orbit without gyroscopic effect 

 
Rotating speed is an important parameter affecting the vibration response of rotor/casing system. It is 
noted from Figures- 7 and 8 that full rubbing is not possible at ω = 24 rad/sec and ω = 30 rad/sec. 
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(b) Computer predicted 

 
Figure  7. Steady state response at ω = 24 rad/sec 
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(b) Computer predicted 

Figure  8. Steady state response at ω = 30 rad/sec 
 
With the increase in speed from zero to a value equal to 1st natural frequency of the system, the rotor 
starts rubbing against the casing. With further increase in speed, the contact breaks. With the introduction 
of damping, the amplitude of vibration may be suppressed as shown in Figures-9 and 10. i.e., as an 
example, at ω = 25.64 rad/sec and Cx = Cy = 20 N-sec/m, full rubbing is not possible. 
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(b) Computer predicted 
 

Figure 9. Steady state response at ω = 25.64 rad/sec ,  C = 20 N-sec/m 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure  10. Effect of External Damping 
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To investigate the effect of stiffness on the dynamic response, the response was plotted for various 
stiffness values at constant angular speed in Figure-12, keeping all the other parameters fixed. As an 
example in Figure-11, rubbing is not observed for stiffness equal to 5100 N/m. By increasing the stiffness 
parameter, rubbing is avoided.  
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              (a) Experimental   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Computer predicted 
 

  Figure  11. Steady state response for Kx = Ky = 5100 N/m 
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                                                              Figure 12. Effect of stiffness 
 
Rotor imbalance is another important parameter affecting the dynamic behavior of the system. In the case 
of 80 gm-mm un-balance, the rotor did not make contact with the casing at rotating speed of 25.64 
rad/sec as given in Figure-13. At the same rotating speed, Figure-14 shows the motion orbit of the rotor 
with rubbing in the case of imbalance equal to 87 gm-mm. It has been observed that this value of 
imbalance causes the largest response keeping the rotating speed constant, i.e., for causing rubbing 
between rotor and casing, the amplitude of imbalance must exceed a certain value known as the critical 
rubbing excitation. 
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                                                                    (b) Computer predicted 

Figure  13. Steady state response at me = 80 gm-mm 
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(b)   Computer predicted 
Figure 14. Steady state response at me = 87 gm-mm 

 
 Conclusion 
The dynamic vibration response of a flexible rotor/casing system before its interaction with the outer 
casing is obtained taking into account the gyroscopic effect. The simulation is carried out in MATLAB 
under variations in system’s parameters .The conclusions are summarized as follows: 
 

�

 The inclusion of gyroscopic effect in the vibration model is useful in revealing the nature of vibration 
response. 

�

 The results demonstrate the dependence of the motion on system’s parameters like imbalance, speed of 
rotation, stiffness, damping etc. 

�

 It is shown that by selecting the optimal system’s parameters, the harmful heavy rubbing between the 
rotating and stationery parts can be avoided. 
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