
methodologies, such as model driven engineering
(MDE), models become first-class artifacts. Therefore,
performing VMS activities on models are essential;
however, existing file-based VMS systems are not
adequate for performing such activities on models.
Fundamentally, the main reason of inadequacy of
existing systems, such as Subversion [x], is due to the
fact that these systems are file-based and consider
software artifacts as a set of text files having no
relations. In contrast, models are graphs with nodes
being complex entities and arcs (relations) containing a
large part of model semantics. File-based tools use
textual or structured data to represent models at fine-
grained level. This representation is not suitable for diff
and merge operation of models due to several reasons.
For instance, in MDE, software documents are not only
text files, but also consist of diagrams such as different
types of UML diagrams. These diagrams are often
stored as XMI formats, such as a class diagram might
be represented by a few lines of text in the file. The
order of these sections of text is irrelevant in a file and
the CASE tools can store the sections representing
classes or other diagram elements in arbitrary order. To
a large extent, the order of text lines and their layout is
immaterial for diff and merge operations on models.
Therefore, applying diff and merge operations at the
level of plain text would hardly produce meaningful
results. Therefore, the goal of this paper is to develop a
generic fine-granular model diff solution for class
and activity diagrams of the unified modeling language
(UML). The model diff deals with comparing the two
versions to detect the differences and matches between
them. It is an important and challenging task in the
MDE. The traditional VCS systems are text-based
systems and are not designed to operate adequately on
models. Therefore, in this paper we propose an
approach that handles the model structures adequately.

The goal of this work is to develop a generic
framework to deal with the issues of model diff, merge
and evolution control activities in model-based VMS
system. At a fine-grained level we represent our models
as graph structures, which is an intermediate
representation based on graph theory. The diff, merge
and evolution control activities are performed at the
level of graph structures, whereas versioning activities
should remain at textual or structural representation,

120

Abstract-

Keywords-

I. INTRODUCTION

In this paper we present a model-based
version management system. Version Management
System (VMS) a branch of software configuration
management (SCM) aims to provide a controlling
mechanism for evolution of software artifacts created
during software development process. Controlling the
evolution requires many activities to perform, such as,
construction and creation of versions, identification of
differences between versions, conflict detection and
merging. Traditional VMS systems are file-based and
consider software systems as a set of text files. File-
based VMS systems are not adequate for performing
software configuration management activities such as,
version control on software artifacts produced in earlier
phases of the software life cycle. New challenges of
model differencing, merge, and evolution control arise
while using models as central artifact. The goal of this
work is to present a generic framework model-based
VMS which can be used to overcome the problem of
tradition file-based VMS systems and provide model
versioning services.

Software Configuration Management,
Version Management System, Model Diff, Model
Merge, Evolution Control, Model-Based VMS

To develop large software projects (in which more
than one person participate), it essentially needs the
efficient management of software artifacts created
during software development. In the absence of
controlled management, the software products that the
industry has turned out can be delivered much later than
scheduled, may cost more than anticipated and would
have been poorly design and documented [xi]. Version
management system (VMS) aims to provide a
controlling mechanism to such problems. VMS deals
with controlling the evolution of software systems.
Controlling the evolution requires many activities to
perform, such as, construction and creation of versions
of the software artifacts, performing model diff
activity (i.e., the identification of differences between
versions), conflict detection, and merge activity (i.e.,
combining two or more versions) [i].

With the advent of modern software development

Model-based Version Management System
Framework

1 2 3 4W. Mehmood , A. Ali , A. Qayyum , M. E. Quershi

1,2,3,4Computer Science Department, COMSATS Institute of Information Technology, Wah Cantt. Pakistan
1drwaqar@ciitwah.edu.pk

Technical Journal, University of Engineering and Technology (UET) Taxila, Pakistan Vol. 20 No. IV-2015

121

Technical Journal, University of Engineering and Technology (UET) Taxila, Pakistan Vol. 20 No. IV-2015

identifier for each model element. The output produced
by the approach is in form of a sequence of edit
operation while in our approach the results are brought
back into a model which is more comprehensible for
understanding. The approach also does not detect
shifting of elements between models and detect shift
operation as delete-add operation. Ohst et al. [ix]
address the problem of how to detect and visualize
differences between versions of UML documents, such
as, class or object diagrams. The approach assumes that
each model element has a unique identifier which is
used for model comparison. For showing the
differences between two documents the unified
document is used which contains the common and
specific parts of both base documents; the specific parts
are highlighted. EMF Compare [xiv] is an open source
tool used EMF technology project to compare models
in EMF. It is realized by a package of Eclipse plugins
that overwrite Eclipse's standard comparing behavior.
EMF Compare uses a generic algorithm for model
comparison. The comparison is performed in two-
phases: In the first phase the match engine tries to find
similar elements and creates a match model. Based on
this model the difference engine is used to generate
detailed information about the differences of certain
model elements. A difference model is the result of the
second phase. Both match and difference model are
EMF models and therefore can be treated like any other
model. As compared to our approach the diff and match
model produced by EMF Compare cannot be converted
to graphical representation as done in our approach.
Furthermore, EMF Compare also suffers from the
sensitivity issue of layout or order changes. A detailed
empirical comparison of our approach with EMF
Compare is already given in Section 4 which shows the
performance efficiency of our approach. Xing et al.
[xv] presented an automated UML-aware structural-
differencing algorithm, UML Diff. UML Diff is an
algorithmforautomatically detecting structural
changes between the designs of subsequent versions of
object-oriented software. It takes as input two class
models of a java software system, reverse engineered
from two corresponding code versions. The approach
uses a language-based matching criterion and identifies
corresponding entities based on their name and
structure similarity. If two objects have same name,
they are identified as equal, if not, their structural
similarity is considered, computed from the similarity
of names and other criteria specific of the considered
entity type. Kelter et al. [xvi] presented a generic
algorithm SiDiff which uses an internal data model
comparable with a simplified UML meta-model. A
diagram is extracted from an XMI file and is
represented as a tree consisting of a composition
structure. In this approach the model elements are
characterized by the elements they consists of, the
difference algorithm starts with a bottom-up traversal
at the leaves of the composition tree. The approach uses

such as XMI-files. By doing so, on one hand we are
getting the advantages of reusing the traditional VMS
systems for versioning purposes and on other hand we
avoid the problems associated with textual or
structured representation when performing the rest of
the activities. Evolution control mechanisms are
defined based on intra & interlink dependencies
between models element. The innovative aspects of the
approach are generality, traceability between models
element through intra & interlink dependencies,
definition of evolution control mechanism and
reusability of existing VMS systems.

The organization of this paper is as follows:
Section 2 describes the related work. Section 3 presents
the main components of our framework. Section 4
describes reference architecture. Finally a short
conclusion and future work is given in the last section.

Fig. 1. Model-based SCM Framework

II. RELATED WORK

Many solutions to model-based SCM exist in
literature. In this section we will describe the existing
solutions. Alanen and Porres in [xiii] discuss the
difference and union of models in the context of a
version control system. Three meta-model-
independent algorithms are given that calculate the
difference between two models, merge, and calculate
the union of two models. However, these algorithms
crucially rely on the existence of a universally unique

Model Development

Source Model Source DSLinstanceOf

input models

Model Versioning Framework

Model Transformation
DSL Mapping

Source
DSL

Target
DSL

Target Model Target DSLinstanceOf

target models

Model Configuration

Model
Merge

Model
Diff

Evolution
Control

Mechanisms
uses uses

model versions

Version Management

122

Technical Journal, University of Engineering and Technology (UET) Taxila, Pakistan Vol. 20 No. IV-2015

modeling issues, such as the development of source
models conforming to source DSL using a model
editor. As a source models we are using MOF-
compliant domain specifics languages (DSLs), such as
unified modeling language (UML), ECore. A source
model conforming to source DSL is transformed into
target model conforming to target DSL in Model
Transformation module. A developer can load a source
model from the repository rather than developing a new
one.

B. Model Transformation
The Model Transformation module deals with

model-to-model transformation. At a fine-grained level
we represent our models as graph structures. In Model
Transformation module the configuration manager first
establishes mappings between the source and target
DSLs.

The mappings are the transformation rules defined
for the sake of transforming a source model into a target
model. Transformation between a source model into
the target model is based on the mapping rules defined
by the configuration manager.

C. Model Configuration
The Model Configuration module deals with

Model Diff, Model Merge, and Evolution Control
Mechanisms. Below we give a brief description of
these tasks.

1) Model Diff
The Model Diff deals with model differencing.

Model differencing is the process of comparing two
models for the purpose of identifying mapping
(similarity) and differences between them. It is an
essential activity in many model development and
management practices [ix]. For example, model
differentiation is needed in a model versioning system
to trace the changes between different model versions
to understand the evolution history of the models.
Model comparison techniques and tools may help to
maintain consistency between different views of a
modeled system. Furthermore, model differentiation
can also be applied to assist in testing the correctness of
model transformations by comparing the expected
model and the resulting model after applying a
transformation rule set.

When comparing two models, model mappings
define those entities that represent a single conceptual
entity in the compared models, while the unmatched
entities represent model differences [ix].

2) Model Merge
The Model Merge deals with model merging.

Model merging denotes the process of combining n
alternative versions a1, . . . ,an into a consolidated
version a, usually, n = 2. Different variants developed
more or less independently from some common

a signature-based matching criterion. The Pounamu
approaches presented in [v] describes a generic
approach for diff and merge via a set of plug-in
components. Plug-ins is developed for the meta-CASE
tool Pounamu which support version control, visual
differencing and merging. The approach uses
operation-based method for difference computation
which results in the dependency of the tool in which
diagrams are edited, contrary to our approach which
uses State-based approach. The approach uses a
universal ID (uid)-based matching criteria. Also the
approach lacks detection of the shifts operation.

Existing approaches in the area of model-based
VMS usually deal with only one specific kind of model
e.g. workflow [viii] or class diagram [ix, vi], in
contrast, our approach is generic and not dependent on
any specific model. The approach presented in [vii]
performs diff/merge on structured data, i.e., XMI. As
stated earlier such representation is not suitable for
these activities, we use graph structure for diff/merge
operations to avoid problems of textual representation.
The approach presented in [iv, iii], is based on
operation-based conflict detection & resolution. All
edit operations that are executed on the diagrams are
logged by the editor tool and used for conflict
resolution, thus the approach is dependent on editor
tool. We presented a state-based approach which is
independent of editor tools since logging of edit
operations is not required. To the best of our knowledge
the only approach that addresses the issue of evolution
control is given in [ii], however the evolution control is
based on the attributes' properties while in our approach
it is based on interlink information. Furthermore, the
existing approaches, with the exception of [v], don't
reuse the traditional VMS tools, while we argue that
existing VMS tools should be reused for versioning
purpose.

III. MODEL-BASED VMS FRAMEWORK

Keeping the issues of file-based VMS systems this
paper provides a generic model-based VMS
framework, which aims to overcome the challenges
faced by existing systems when dealing with models as
central artifact. Following are the components of our
proposed framework:
a. Model development
b. Model transformation
c. Model configuration

i. Model diff
ii. Model merge
iii. Evolution control

d. Version management
e. Graph structure DSL

Below is the description of these components.

A. Model Development
The Model Development module deals with

123

Technical Journal, University of Engineering and Technology (UET) Taxila, Pakistan Vol. 20 No. IV-2015

3) Evolution Control
The goal of MDE is to perform Software

Engineering (SE) activities only on models, however,
in reality models and files coexist and will have to be
managed together in a consistent way. As identified in
[ii, xii] this situation requires the definition of new
evolution paradigms for software projects that consist
of a mixture of models and files. The Evolution Control
deals with defining a policy for creating a new version,
defining version granularity, defining intralink and
interlink information. The assumption is that software
development consists of a set of different kinds of
models and the interlink information between these
models. Such models include analysis and design
models, test models, and implementation models.
These models may possibly be created using different
development tools in a heterogeneous environment.
For traceability & synchronization between these
models one needs to identify intra & interlink
dependencies between different model elements. In our
framework, we first define the concepts of intra &
interlink dependencies between model elements.
Based on intra & interlink information we define the
concept of evolution control policy. In this regard this
module addresses the issue of traceability and
evolution control mechanisms in model-based VMS
systems.

ancestor are sometimes needed to be combined into one
common version. The merge process consists of the
following three main steps:
· Versions comparison: The process of comparing

derived versions with the base version.
· Conflict detection and resolution: The process of

identifying the conflicted elements and resolving
the conflicts either manually or automatically.

· Merging: The process of combining two or more
versions into a consolidated version.
The comparison process of versions are described

in the previous subsection Model Diff. We reuse the
results of Model Diff in merge activities. We identified
different merge cases in order to differentiate the
conflicted and non-conflicting cases. Based on merge
cases we establish our merge policy. The result of diff
comparison will be analyzed according to the merge
policy and possible actions are categorized into add,
delete, include changed etc. The desired action then
will be performed. The process of merging cannot be
completely automated [xix]. Manual interaction is
required in case of conflict detection. A conflict usually
occurs if the same element of a model is modified in
parallel. In case of conflict the conflicted elements will
be identified. A manual interaction will be required to
resolve the conflict. Finally the merge operation will be
performed and the merge diagram will be obtained.

Fig. 2. DSL of Graph structure

Graph structure

EdgeRelation

-id
-type

src

tgt

1

1

ModelElement

-type

src

tgt

1

1

EdgeList

-id
-type

Attribute

-name
-id

1

baseline. It selects a suitable representation for the
version set (e.g. version graph), and it also provides
operations for retrieving old versions and constructing
new versions. Each version has relationship to the next
and previous versions. Versions are queried or created
by transactions. These include both read-only and read-
write transactions, such as update, history, check in,
checkout etc made by the user. Although traditional

D. Version Management
In traditional VMS approaches versioning, diff,

and merge activities are performed on structured data
such as XMI. In versioning, a version model defines the
items to be versioned, the common properties shared by
all versions of an item, and the deltas. It defines
whether a version is characterized in terms of the state it
presents or in terms of some changes relative to some

124

Technical Journal, University of Engineering and Technology (UET) Taxila, Pakistan Vol. 20 No. IV-2015

proposed framework. There are six main components
and a repository. The components are Model Editor,
XMI/GS Converter, Merger, Diff Comparator,
EPControler and Versioning System. XMI/GS
transforms them into graph structures and vice versa.
The graph structures of different versions are inputs to
the DiffComparator. The Diff Comparator performs
model diff by comparing the graph structures and
produces diff result in the form of matched and
unmatched e lements . The ou tpu t o f the
DiffComparator, i.e., The diff result is input to both the
Merger and EPControler component. Merger analyzes
diff result based on the merge policy and performs a
three-way merge. The EPContorler manages the
evolution control based on diff result and intra &
interlink information. Finally, the Versioning System is
the reusable component of existing VMS systems and
responsible for managing versions.

V. CONCLUSION

This paper presents a generic framework for model
diff, merge and evolution control activities in model-
based VMS systems. Graph structure can be used to
represent any kind of model either domain specific or
UML models. The presented framework is generic in a
sense that it is neither dependent on any specific tool
nor on any specific model type. Furthermore, these
existing approaches do not consider reusability of
existing file-based VMS systems and in most of the
cases evolution control mechanisms are also missing.
In this work at conceptual level, we proposed a model-
based VMS framework that can be used to developed
model-based VMS systems. As a future work, the
implementation and evaluation of the architectural
components, i.e., XMI/GS converter, Merger and
EPController will be performed.

VMS tools do not provide good support for model diff,
merge, and evolution control activities however they
do so for versioning. Therefore, in our approach we
reused them for versioning purposes.

E. Graph Structure DSL
An abstract view of the proposed framework is

given in figure 1 which depict the relation of input
models and proposed framework. The inputs of the
framework are graphical models such as UML models.
We call the input model as source domain specific
language (DSL). The source models are transformed
into target models which are the instances of graph
structure which is our target DSL. Below we describe
our graph structure DSL.

A model can be represented in three different ways
[vi], a) the graphical representation, i.e., the diagram
itself, b) the persistence representation e.g. XMI, and c)
intermediate representation e.g. syntax tree or graph
structure. The graphical representation is the coarse-
grained while the other two are fine-grained
representations. In our approach, at a fine-grained level
we represent models in an intermediate representation,
i.e., graph structures. A metamodel of graph structure is
given in Fig. 2. It consists of Model Element, Edge
Relation, EdgeList and Attribute. Model Element
represents the set of entities in the model, Edge
Relation represents the relationships or associations
within the model, EdgeList is a relationship used to
connect all entities in the graph structure. Finally,
Attribute represents all the possible features of model
elements. With this metamodel, we can represent any
kind of model at fine-grained level.

IV. REFERENCE ARCHITECTURE

Fig. 3 shows the reference architecture of our

Model Editor
XMI

XMI/GS Converter

Graph structure

Merger

Graph structure

Diff result

Merge Policy

DiffComparator

Diff result

ECPolicy
EPControlerRepository Intra/inter link info

Evolution
control

Versioning System
Import/export

Checkin, checkout

Fig. 3. Reference Architecture

125

Technical Journal, University of Engineering and Technology (UET) Taxila, Pakistan Vol. 20 No. IV-2015

between versions of UML diagrams”.In
ESEC/FSE-11: Proceedings of the 9th European
software engineering conference held jointly
with 11th ACM SIGSOFT international
symposium on Foundations of software
engineering, 2003.

[x] M. Pilato, Version Control With Subversion.
O'Reilly & Associates, Inc., Sebastopol, CA,
USA, 2004.

[xi] E. H. Berso, V. D. Henderson and S. G.
Siegel.“Software configuration management”.
SIGSOFT Softw. Eng. Notes, 3(5):9{17, 1978.
ISSN 0163-5948.doi:

[xii] J. Estublier, T. Leveque and G. Vega.“Defining
and supporting evolution strategies for model
driven software projects”. LIG-IMAG, 220, rue
de la Chimie BP53, 38041 Grenoble Cedex 9,
France.

[xii] M. Alanen, I. Porres, "Difference and union of
models," In Proceedings of the UML
Conference, Springer-Verlag LNCS 2863, San
Francisco, California, pages 217, Oct.2003.

[xiv] Eclipse foundation, "emf compare," 2008,
http://www.eclipse.org/modeling/emft/?project
=compare#compare.

[xv] Eleni Xing, Zhenchang, Stroulia, "Umldiff:An
algorithm for object-oriented design
differencing," In Proc, IEEE/ACM
International Con-ference on Automated
Software Engineering(ASE'05), Nov.2005, Long
Beach, California, USA, ACM, pp 54-65.

[xvi] U. Kelter, J. Wehrenand J. Niere, "A generic
difference algorithm for uml models," In Peter
Liggesmeyer, Klaus Pohl, Michael Goedicke,
editors, Software Engineering, volume 64 of
LNI, pp 105-116, GI, 2005, ISBN 3-88579-
393-8.

http://doi.acm.org/10.1145/953579.811093.

REFERENCES

[i] Conradi and Westfechtel. “Version Models for
Software Configuration Management”.CSURV:
Computing Surveys, 30, 1998.

[ii] J. Estublier, T. Leveque and G. Vega.“Evolution
control in MDE projects: Controlling model and
code co-evolution”. In Published at FSEN Int.
Conf. On Fundamentals of Software
Engineering Theory and Practice, 2009.

[iii] M. Koegel, J. Helming and S. Seyboth.
“Operation-based conflict detection and
resolution”. In CVSM '09: Proceedings of the
2009 ICSE Workshop on Comparison and
Versioning of Software Models, 2009.

[iv] M. Kogel, “TIME - Tracking Intra- and Inter-
Model Evolution”. In Software Engineering
(Workshops), 2008.

[v] A. Mehra, J. Grundy and J. Hosking.“A generic
approach to supporting diagram differencing
and merging for collaborative design”.In ASE
'05: Proceedings of the20th IEEE/ACM
international Conference on Automated
software engineering, 2005.

[vi] U. Ohst, D., M. Welle and U. Kelter. “Merging
UML Documents” .Techn ica l repor t ,
Universitat¨Siegen, 2004.

[vii] H. Oliveira, L. Murta and C. Werner. “Odyssey-
VCS: a flexible version control system for UML
model elements”. In SCM '05: Proceedings of
the 12th international workshop on Software
configuration management, 2005.

[viii] E. Ogasawara, P. Rangel, L. Murta, C. Werner
and Marta Mattoso. “Comparison and
versioning of scientific workflows”.In CVSM
'09: Proceedings of the 2009 ICSE Workshop on
Comparison and Versioning of Software
Models, 2009.

[ix] D. Ohst, M. Welle and U. Kelter. “Differences

Authorship and Contribution Declaration

Author-s Full Name Contribution to Paper

1
Dr. Waqar Mehmood
(Main/principal Author)

2

Proposed topic, basic study Design,
methodology and manuscript writing

3 Data Collection, statistical analysis

Literature review
Mr. Arshad Ali
(2nd Author)

Dr. Abdul Qayyum
(3rd Author)

4 Referencing and quality insurer
M. Ejaz Qureshi
(4th Author)

	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131

