Parameterization of Triangle Groups Isomorphic to Least Simple Group A5 of Projective Symplectic Groups

A. Mahboob ${ }^{1}$, M. Altaf ${ }^{2}$, S. Mahboob ${ }^{3}$, T. Hussain ${ }^{4}$
' Department of Maths, Division of Science and Technology, University of Education Lahore, Pakistan, ${ }^{2}$ Department of Mathematics Statistics, UET Taxila, Pakistan,
${ }^{3}$ Department of Mathematics, Minhaj University Lahore,Pakistan,
${ }^{4}$ Department of Mathematics, GHSS Shergarh, Pakistan.
'abid.mahboob@ue.edu.pk

Abstract

In this paper, we investigate the influence of A 5 on $\mathrm{PSp}(4,2)$ and $\mathrm{PSp}(4,3)$ and find the triangle group isomorphic to smallest simple group A5 using the Character table of Projective Symplectic groups. Also discuss some interesting results by use of character tables of the given groups.

Keywords- Projective Symplectic groups, Simple groups, Character Table, Triangular Group.

AMS Mathematics Subject Classification (2010)20D06, 20D20, 20D40, 20D60 .

I. InTRODUCTION

In this paper we introduced the existence of smallest simple alternating group A_{5} in Projective Symplectic group. All the notations and terminologies are standard and discussed in $[1,2,3]$, [4,5] while [6] discussed the permutation representations of triangular groups. In [7] gave a technique how to construct representations of Symplectic groups of different degrees and then many other authors introduced and present extensions of smallest simple group in different finite groups. In [8], proved A_{5} as a subgroup of ${ }^{2} F_{4}(2)$. In [9], the two conjugate classes of A_{5} within S_{6}. Recently, in [10] proved A_{5} as a subgroup of S_{7}. [11] introduced the same result in his excellent work in the groups other than symmetric groups. By [12], A_{5} is the smallest non-abelian simple group of order $2^{2} .3 .5$ and the smallest non-solvable group containing four conjugacy classes. Now we find A_{5} within $\operatorname{PSp}(4,2)$ and $P S p(4,3)$ by using character table of these groups. In [13] the projective symplectic group simply denoted by PSp is the group obtained from the Symplectic group $S p_{n}(q)$ on factoring by the scalar matrices PSp is simple except for

$$
\begin{aligned}
& \mathrm{PS}_{\mathrm{p} 2}(2)=\mathrm{S}_{3} \\
& \mathrm{PS}_{\mathrm{p} 2}(3)=\mathrm{A}_{4}
\end{aligned}
$$

$$
\mathrm{PSp}_{4}(2)=\mathrm{S}_{6}
$$

In complex field, [14] studies local system of generators and associates finite unitary groups with Symplectic groups. By $[15,16], A_{5}$ is the smallest nonabelian and non-solvable group of order 60 containing 4 conjugacy classes. A group $\Delta(2,3, k)$ of the form
$\Delta(2,3, k)=\left\langle a, b ; a^{2}=b^{3}=(a b)^{k}=1\right\rangle$
where k is any positive integer, is known
As triangular group discussed in (see [17].[18]). For k = 5 , it is isomorphic to A_{5}.

In [19], the parametrization of extended triangle groups for various values of k has been described it as subgroups of $\operatorname{PSL}(2, q)$. While, in [20] gives characterization of symplectic groups of degree 4 over locally finite fields of degree 2 which can be described in class of periodic groups.
Moreover, the role of duality triangular groups is vital in characterization of symplectic groups with homomorphic images of Alternating group A_{5}. In representational point of view of these groups can be studied in [21] s-duality of triangular groups and its modular animalises has been calculated in finite fields.

II. PRELIMINARIES

In this section we present some basic definitions and examples and then prove some theorems. In this paper our main focus is to find A_{5} in Projective Symplectic group and verify some basic results.
The $P S p_{2 n}(q)$ groups are simple except for $P S p_{2}(2)$, $P S p_{2}(3)$ and $P S p_{4}(2)$.
2.1. Definition: Let $\Delta(2,3,5)$ be a triangular group if $|a|=2,|b|=3$, then $|a b|=5$, i.e., $G=\left\{\langle a, b\rangle: a^{2}=1=\right.$ $\left.b^{3}=(a b)^{5}\right\}$.
2.2. Definition: The Projective Symplectic group $P S p_{n}(q)$ is the group obtained from the symplectic
group $S p_{n}(q)$ on factoring by the scalar matrices contained in that group.
In [22], Sympletic group and its subgroups having commutators with influence can be studied.
2.3. Definition: A triangle group is a group that can be realized geometrically by sequences of reflections across the sides of a triangle. Each triangle group is the symmetry group of a tilling of the Euclidean plane, the sphere or the hyperbolic plane by congruent triangles, each one a fundamental domain for the action.
$\Delta(2,3, k)=<a, b ; a^{2}=b^{3}=(a b)^{k}=1>$
Example: There exist two conjugate classes with in S_{6} using character table of $S_{6}[6]$.
In order to prove the main results, we use some basic theorems.
2.4. Theorem: Let G be a Projective Symplectic group $\operatorname{PSp}(4,2)$. Then there exist two non-conjugate classes of simple group isomorphic to A_{5} involved by classes C_{β}, C_{γ} and C_{α} such that $\beta^{2}=\gamma^{3}=1=(\beta . \gamma)=\alpha^{5}$ in Psp $(4,2)$.

Proof: Let $\mathrm{G}_{2} \leq \mathrm{PSp}(4,2)$ be a subgroup isomorphic to A_{5}. Therefore, by Lagrange's theorem A_{5} may be a candidate to exists within $\operatorname{PSp}(4,2)$ as a subgroup.

In order to find the possibility of the existence of A_{5} within $\operatorname{PSp}(4,2)$, we need some additional information of $\operatorname{PSp}(4,2)$. Since A_{5} is obtained by $\mathrm{a}^{2}=2, \mathrm{~b}^{3}=1$ and $(\mathrm{ab})^{5}=1$.
$\Delta(2,3,5)=<\mathrm{a}, \mathrm{b} ; \mathrm{a}^{2}=\mathrm{b}^{3}=(\mathrm{ab})^{5}=1>$
By [17], β and γ are representations of conjugacy classes C_{β} and C_{γ} of the respective elements. Let $|\beta|=2$ and $|\gamma|=3$ such that $\beta \gamma=\alpha$, where $|\alpha|=5$ in $\operatorname{PSp}(4,2)$. To show that A_{5} is a subgroup of $\operatorname{PSp}(4,2)$, we need to use character (table 1.1). There are 3 conjugacy classes of order 2,1 conjugacy class of order 5 and 2 conjugacy classes of order 3. To find conjugacy classes, we use the basic formula. We see δ_{04} involved but δ_{02} and δ_{03} are not involved in the relation. The general formula for calculating the conjugacy classes be
$\#\langle\beta, \gamma\rangle=$
$\frac{|G|}{\left|C_{G}(\beta)\right|\left|C_{G}(\gamma)\right|} \sum_{i=1}^{11} \frac{\delta_{i}(\beta) \delta_{i}(\gamma) \overline{\delta_{i}(\alpha)}}{\delta_{i}(1)}$
where solutions of equations $\beta \cdot \gamma=\alpha$ are obtained by $\#<\beta . \gamma>$, the degree of characters of G denoted by χ_{i} (1), $\chi_{\mathrm{i}}(\beta)$ and characters values of ith character denoted by $\chi_{i}(\gamma)$ and $\overline{\delta(\alpha)}$, Where $\overline{\delta_{1}(\alpha)}$ be the conjugate of α. Note that $a \in \delta_{04}, b \in \delta_{07}$ and $(a b) \in \delta_{11}$ then,
$\#<2.3=5>=720 / 16.18[1+0+0+\ldots 0]=5$
Clearly, there exist five triangular relations in PSp (4, $2)$ and form alternating group A_{5} within $\operatorname{PSp}(4,2)$. Now the only question is left to be answered here is that how many of such A_{5} are conjugate? For this, we see that
$\left|\mathrm{C}_{\mathrm{G}}(\alpha)\right|=5$, where $|\alpha|=5$. Hence the
class β_{04} of $\operatorname{PSp}(4,2)$ and β_{07} is contained in $(2,3,5)$ triangular relation. Let $\mathrm{a} \in \delta_{04}, \mathrm{~b} \in \delta_{09}$ and $(\mathrm{ab}) \in \delta_{11}$, \# <2.3
$=5>=720 / 16.18[1+0+0+\ldots 0]$
$=5$
Hence δ_{04} of $\mathrm{PSp}(4,2)$ and δ_{07} also involved in the above relation. Hence for each $\#<2.3=5>=5$ relations, we have
$<a, \mathrm{~b} ; a^{2}=b^{3}=(a b)^{5}=1>=A_{5} \&\left|C_{G}(5)\right|=5$.
Clearly, A_{5} exist in the relation $(2,3,5)$ by different conjugate values of the elements a and b. If $|\mathrm{a}|$ and $|\mathrm{b}|$, then by [23], we have seen from Table 1.1 PSp $(4,2)$ (see below) contained in $P S p(4,2)$, then order of $a b=$ 5. In order to find the number of conjugate subgroups with A_{5}, we have $|\alpha|=5$ and $|\beta|=2,|\gamma|=3$ in $\operatorname{PSp}(4,2)$ and $|\alpha|=|\beta . \gamma|=5$
then $\alpha \in C_{G}(5) . x(\beta \cdot \gamma) x^{-1}=x$
$\alpha x^{-1}=\alpha$
This implies that

$$
\begin{aligned}
& x \beta x^{-1} x \gamma x^{-1}=\alpha \\
& \text { so }\left(x \beta x^{-1}\right)\left(x \gamma x^{-1}\right)=\alpha
\end{aligned}
$$

The same α is obtained by conjugating β and γ with $\alpha=$ 5 in $C_{G}(\alpha)$. So the total number of pairs of β and γ is equal in number to order of the centralizer of α.
Thus, all the 5 relations become conjugate by conjugating β and γ with the centralizer of α. This concludes that there are just two non-conjugate classes of simple group $\Delta(2,3,5) \cong A_{5}$ with in $P S p(4,2)$ as required.
2.5. Theorem: Let G be a Projective S ymplectic group $\mathrm{PSp}(4,3)$. Then there exist two non-conjugate classes of simple group isomorphic to A_{5} involved by classes C_{β}, C_{γ} and C_{α} such that $\beta^{2}=\gamma^{3}=1=(\beta . \gamma)=\alpha^{5}$ in PSp (4, 3).

Proof: Let $\mathrm{G}_{1} \leq \mathrm{PSp}(4,3)$ be a subgroup isomorphic to A_{5}. Therefore, by Lagrange's theorem A_{5} may be a candidate to exists within $\operatorname{PSp}(4,3)$ as a subgroup.

In order to find the possibility of the existence of A_{5} within $\operatorname{PSp}(4,3)$, we need some additional information of $\mathrm{PSp}(4,3)$. Since A_{5} is obtained by $\mathrm{a}^{2}=$ $2, \mathrm{~b}^{3}=1$ and $(\mathrm{ab})^{5}=1$.

Class	δ_{01}	δ_{02}	δ_{03}	δ_{04}	δ_{05}	δ_{06}	δ_{07}	δ_{08}	δ_{09}	δ_{10}	δ_{11}
$n(l)$	1	15	15	45	90	90	40	120	40	120	144
Order	1	$[2]$	$[2,2]$	$[2,2,2]$	$[4]$	$[4,4]$	$[3]$	$[6]$	$[3,3]$	$[6]$	$[5]$
χ_{01}	1	1	1	1	1	1	1	1	1	1	1
χ_{02}	1	-1	-1	1	1	-1	1	-1	1	-1	1
χ_{03}	5	-3	1	1	-1	-1	2	0	-1	1	0
χ_{04}	5	3	-1	1	-1	1	2	0	-1	-1	0
χ_{05}	5	-1	3	1	-1	1	-1	-1	2	0	0
χ_{06}	5	1	-3	1	-1	-1	-1	1	2	0	0
χ_{07}	9	-3	-3	0	1	1	1	0	0	0	-1
χ_{08}	9	3	3	1	1	-1	0	0	0	0	-1
χ_{09}	10	-2	2	-2	0	0	1	1	1	-1	0
χ_{10}	10	-2	2	-2	0	0	1	1	1	-1	0
χ_{11}	16	0	0	0	0	0	-2	0	-2	0	1

Table (1.1)

By [17], β and γ are representations of conjugacy classes C_{β} and C_{γ} of the respective elements. Let $|\beta|=$ 2 and $|\gamma|=3$ such that $\beta \gamma=\alpha$, where $|\alpha|=5$ in PSp (4, 3). To show that A_{5} is a subgroup of $\operatorname{PSp}(4,3)$, we need to use character (Table 1.2). Clearly there are 2 classes of elements of order 2.
So first or second or both involved in the relation. Since only even permutations involved in the construction of A_{5}, so δ_{02} is not involved in the relation as it is odd order class. Only δ_{03} involved in the relation (2,3,5). Similarly, 4 classes of elements of order 3 .

There is only one class of the elements of order 5. The general formula for calculating the conjugacy classes in the construction of triangular group is
$\#\langle\beta, \gamma\rangle=$

$$
\frac{|G|}{\left|C_{G}(\beta)\right|\left|C_{G}(\gamma)\right|} \sum_{i=1}^{20} \frac{\delta_{i}(\beta) \delta_{i}(\gamma) \overline{\delta_{i}(\alpha)}}{\delta(1)}
$$

where solutions of equations $\beta \cdot \gamma=\alpha$ are obtained by $\#<\beta . \gamma>$, the degree of characters of G denoted by χ_{i} (1), $\chi_{i}(\beta) \&$ characters values of ith character denoted by
$\chi_{i}(\gamma)$ and $\overline{\delta_{l}(\alpha)}$
Where $\overline{\delta_{l}(\alpha)}$ be the conjugate of α.
Note that $\mathrm{a} \in \delta_{03}, \mathrm{~b} \in \delta_{06}$ and $(\mathrm{ab}) \in \delta_{10}$
then,
$\#<2.3=5>=2^{6} \cdot 3^{4} \cdot 5 / 2^{7} \cdot 3^{4}[2]=5$
Clearly, there exist 5 triangular relations in $\operatorname{PSp}(4,3)$ and form alternating group
A_{5} within $\operatorname{PSp}(4,3)$. Now the only question is left to be answered here is that how many of such A_{5} are conjugate?
For this, we see that
$\left|\mathrm{C}_{\mathrm{G}}(\alpha)\right|=5$,
where $|\alpha|=5$.

Hence the class δ_{03} of $\operatorname{PSp}(4,3)$ and δ_{06} is in the construction of $(2,3,5)$ relation.
Now, we observe that $\mathrm{a} \in \delta_{03}, \mathrm{~b} \in \delta_{07}$ and $(\mathrm{ab}) \in \delta_{10}$, $\#<2.3=5>=2^{6} .3^{4} .5 / 2^{7} \cdot 3^{4}[2]=5$.

Hence the class δ_{03} of $\operatorname{PSp}(4,3)$ and δ_{07} also involved in the above relation. Thus, for each of the relation
$\#<2.3=5>=5$,
we have
$A_{5}=<a, \mathrm{~b} ; a^{2}=b^{3}=(a b)^{5}=1>$ Since $\#<\beta . \gamma=\alpha>=5$,
we see
$\left|C_{G}(5)\right|=5$
Clearly, A_{5} exist in the relation $(2,3,5)$ by different conjugate values of the elements a and b. If $|\mathrm{a}|$ and $|\mathrm{b}|$ contained in $\operatorname{PSp}(4,3)$, then order of $a b=5$. In order to find the number of conjugate subgroups with A_{5},
we have
$|\alpha|=5$ and $|\beta|=2,|\gamma|=3$ in $\operatorname{PSp}(4,3)$ and $|\alpha|=|\beta \cdot \gamma|$
$=5$.
then
$\alpha \in C_{G}(5) \cdot x(\beta \cdot \gamma) x^{-1}=x$
$\alpha x^{-1}=\alpha$,
this implies that $x \beta x^{-1} x \gamma \quad x^{-1}=\alpha$
thus
$\left(x \beta x^{-1}\right)\left(x \gamma x^{-1}\right)=\alpha$
The same α is obtained by conjugating β and γ with $\alpha=5$ in $C_{G}(\alpha)$.
So the total number of pairs of β and γ is equal in number to order of the centralizer of α.

Thus, all the 5 relations become conjugate by onjugating β and γ with the centralizer of α. This concludes that there are just two non-conjugate classes of simple group $\Delta(2,3,5) \cong A_{5}$
Within $P S p(4,3)$ as required.
The character table used in this theorem is given below in Table (2.1).

Class	δ_{01}	δ_{02}	δ_{03}	δ_{04}	δ_{05}	δ_{06}	δ_{07}	δ_{08}	δ_{09}	δ_{10}
$\mathrm{n}(1)$	1	45	270	40	40	240	480	540	3240	5184
Order	1	$[2]$	$[2]$	$[3]$	$[3]$	$[3]$	$[3]$	$[4]$	$[4]$	$[5]$
χ_{01}	81	9	-3	0	0	0	0	-3	-1	1
χ_{02}	64	0	0	-8	-8	4	-2	0	0	-1
χ_{03}	60	-4	4	6	6	-3	-3	0	0	0
χ_{04}	45	-3	-3	$/ \mathrm{T}$	T	0	0	1	1	0
χ_{05}	45	-3	-3	T	$/ \mathrm{T}$	0	0	1	1	0
χ_{06}	40	-8	0	$/ \mathrm{S}$	S	-2	1	0	0	0
χ_{07}	40	-8	0	S	$/ \mathrm{S}$	-2	1	0	0	0
χ_{08}	30	6	2	$/ \mathrm{R}$	R	-3	0	2	0	0
χ_{09}	30	6	2	R	$/ \mathrm{R}$	-3	0	2	0	0
χ_{10}	30	-10	2	3	3	3	3	-2	0	0
χ_{11}	24	8	0	6	6	0	3	0	0	-1
χ_{12}	20	4	4	2	2	5	-1	0	0	0
χ_{13}	15	7	3	-3	-3	0	3	-1	1	0
χ_{14}	15	-1	-1	6	6	3	0	3	-1	0
χ_{15}	10	2	-2	$/ \mathrm{Q}$	Q	1	1	2	0	0
χ_{16}	10	2	-2	Q	$/ \mathrm{Q}$	1	1	2	0	0
χ_{17}	6	-2	2	-3	-3	3	0	2	0	1
χ_{18}	5	-3	1	$/ \mathbf{P}$	P	-1	2	1	-1	0
χ_{19}	5	-3	1	P	$/ \mathbf{P}$	-1	2	1	-1	0
χ_{20}	1	1	1	1	1	1	1	1	1	1

Class	δ_{11}	δ_{12}	δ_{13}	δ_{14}	δ_{15}	δ_{16}	δ_{17}	δ_{18}	δ_{19}	δ_{20}
n (1)	360	360	720	720	1440	2160	2880	2880	2160	2160
Order	[6]	[6]	[6]	[6]	[6]	[6]	[9]	[9]	[12]	[12]
$\chi 01$	0	0	0	0	0	0	0	0	0	0
$\chi 02$	0	0	0	0	0	0	1	1	0	0
χ_{03}	2	2	-1	-1	-1	1	0	0	0	0
χ_{04}	/W	W	0	0	0	0	0	0	-/Y	-Y
$\chi 05$	W	/W	0	0	0	0	0	0	-Y	-/Y
$\chi 06$	/V	V	/V	V	1	0	-Y	-/Y	0	0
$\chi 07$	V	/V	V	/V	1	0	-/Y	-Y	0	0
$\chi 08$	U	/U	X	-X	0	-1	0	0	Y	/Y
$\chi 09$	/U	U	-X	X	0	-1	0	0	/J	J
χ_{10}	-1	-1	-1	-1	-1	-1	0	0	1	1
χ_{11}	2	2	2	2	-1	0	0	0	0	0
χ_{12}	-2	-2	1	1	1	1	-1	-1	0	0
χ_{13}	1	1	-2	-2	1	0	0	0	-1	-1
χ_{14}	2	2	-1	-1	2	-1	0	0	0	0
χ_{15}	/P	P	-1	-1	-1	1	-Y	-/Y	/J	J
χ_{16}	P	/P	-1	-1	-1	1	-/Y	-Y	J	/J
χ_{17}	1	1	1	1	-2	-1	0	0	-1	-1
χ_{18}	/U	U	-I	I	0	1	/Y	Y	-/Y	-Y
χ_{19}	U	/U	I	-I	0	1	Y	/Y	-Y	-/Y
χ_{20}	1	1	1	1	1	1	1	1	1	1

(Table 1.2)
$\mathrm{P}=(1+3 \sqrt{-3}) / 2, / \mathrm{P}=1 /\{(1+3 \sqrt{-3}) / 2\}$,
$\mathrm{Q}=(-7+3 \sqrt{-3}) / 2, / \mathrm{Q}=1 /\{(1+3 \sqrt{-3}) / 2\}$
$R=(-3+9 \sqrt{-3}) / 2, / R=1 /\{(-3+9 \sqrt{-3} / 2\}$,
$S=-5-3 \sqrt{-3}), / S=1 /\{-5-3 \sqrt{-3})\}$,
$\mathrm{T}=(9-9 \sqrt{-3}) / 2, / \mathrm{T}=1 /\{(9-9 \sqrt{-3}) / 2\}$,
$\mathrm{U}=(-3-\sqrt{-3}) / 2, / \mathrm{U}=1 /\{(-3-\sqrt{-3}) / 2\}$
$\mathrm{V}=1-\sqrt{-3}, \mathrm{~V}=1 /\{1-\sqrt{-3}\}$,
$\mathrm{W}=(-3+3 \sqrt{-3}) / 2, / \mathrm{W}=1 /\{(-$
$3+3 \sqrt{-3}) / 2\}$,
$\mathrm{X}=\sqrt{-3}, \mathrm{X}=1 / \sqrt{-3}, \mathrm{Y}=(1-\sqrt{-3}) / 2$,
$\mathrm{Y}=1 /\{(1-\sqrt{-3}) / 2\}$

REFERENCES

[1] R. W. Carter, Simple groups of Lie type, John Willey \& Sons, 1972.
[2] H.S.M. Coxeter and W.O.J. Moser, Generators and relations for discrete groups, Bull. Amer. Math. Soc., 64(3) (1958),106-108.
[3] C. W. Curtis, I. Reiner, Representation Theory of Finite Groups and Associative Algebras, John Willey \& Sons, Inc.,1962.
[4] T. M. Hearne, On the Finite Group ${ }^{2} F_{4}(2)$, Ph.D. Thesis, North eastern University, China (1969).
[5] K. H. Dar, On some symmetries of 28 -space associated with the Rudvalis group, Ph.D. Thesis, University of Birmingham, UK (1974).
[6] Muhammad Sarwer. S, Muhammad ashiq, tariq A. Alraqad \& Tahir imam, Permutation representation of a Triangular Group, JP Gerenal of Agebra, number Theory and Applications, 44(2), 159-180, 2019.
[7] Vahid Dabbaghian-Abdoly, Constructing representations of the finite symplectic group Sp(4,q), Journal of Algebra, 303 (2006), 618625.
[8] A. Farooq and K. H. Dar, A simple proof of A_{5} as a subgroup of ${ }^{2} F_{4}(2)$, PUJM, 34(4), (2001),109114.
[9] A. Mahboob and S. Mahboob, Existence of two conjugate classes of A_{5} within S_{6} by use of character table of S_{6}, International Mathematical Forum, 8(32) (2013), 1591-1596.
[10] A. Mahboob, T. Hussain and I. Ali, A simple proof of A_{5} as a subgroup of S_{7} by using character table of S_{7}, Science International, 28(3) (2016), 2363-2364.
[11] JP. Journal of Algebra, Number Theory and Applications, Pushpa Publishing House, India. Volume 39, Number 4, 2017, Pages 445-456.
[12] Rotman J, An Introduction to The Theory of Groups, Springer verlage. Berlin Fourth addition,1994.
[13] Conway, J. H.; Curtis, R. T.; Norton, S. P.; Parker, R. A.; and Wilson, R. A. "The Groups $S p_{n}(q) \& P s p_{n}(q)=S_{n}(q) . " \$ 2.3$ Oxford, England: Clarendon Press, pp. x-xi, 1985.
[14] Nicholas M. Katz, Pham Huu Tiep, Local systems and finite unitary and symplectic groups, Advanced in Mathematics Vol:358, 2019.
[15] J. Rotman, An Introduction to the Theory of Groups, Springer verlag, Berlin,1994.
[16] N. E. Menezes, Random generation and chief length of finite groups, Ph.D. Thesis, University of St. Andrews, Scotland, 2013.
[17] X. Liu and K. Balasubramanian, Computer generation of the character tables of the symmetric groups. $\left(S_{n}\right)$, J. Comput. Chem., 10 (3) (1989), 417-425.
[18] Q. Mushtaq, Parametrization of Triangle Groups as Subgroups of $\operatorname{PSL}(2, q)$, Southeast Asian Bulletin of Mathematics (2001) 25,309312.
[19] D.V. Lytikina \& V.D. Mazurov, characterization of symplectics groups of degree over locally finite fields of characteristics 2 in the class of periodic groups, Siberian mathematics journal, vol:58, No.5pp.850-858, 2017.
[20] S.K. Ashok, E. Dell'Aquila, A. Lenda \& M. Ramzan; S-duality, triangle groups and modular anomalies in $\mathrm{N}=2 \mathrm{~N}=2$ SQCD, Journal of High Energy Physics, Vol: 1, 2016.
[21] Gowy, Commutators in the Symplectic Group, Arch. Math., Vol.50, 204-209 (1988).
[22] D. S. Dummit and R. M. Foote, Abstract Algebra, John Willey \& Sons, Inc.,(2003).
[23] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups, Oxford University Press,1985.

Paper Titled: Parameterization \& Triangle Groups Isomorphic tbeast Simple Group A5 of Projective SymplectiGroups _.......			
Certificate			
The subject article has not been published or submitted to or accepted for publication in any form, in anyother journal or conference etcSubject article is our ownoriginal contribution. We also guarantee that the authorship of this article wilbt be contested by anyone whose name(s) is/are not listed by us here and we will not request thethoritiesof journal to add any more author(s)after submission			
Authorship and Contribution Declaration			
Sr.\#	Author-s Full Name	Contribution to Paper	Signature
1	Dr.Abid Mahboob (Main/principal Author)	Theme and idea of topic which includes representation theory \& methodology developedregarding	
2	Dr. Muhammad Altaf ($2^{\text {nd }}$ Author)	Involved in collection of data \& working software used to collect character Table	Signature by the Corresponding author on Behalf of Co-Authors
3	Mr. Sajid Mahboob ($3^{\text {rd }}$ Author)	Literature reviewof group theory	ofidsid
4	Mr. Taswer Hussain	Contribution in theory of projective Symplectic group	

