
 In this section we present some basic definitions 
and examples and then prove some theorems. In this 
paper our main focus is to find A  in Projective 5

Symplectic group and verify some basic results.

 PSp (2) = S4 6

As triangular group discussed in (see [17].[18]). For k = 
5, it is isomorphic to A .5

2 3 k ∆ ( 2, 3, k ) = < a, b ; a = b = (ab) = 1 > 
where k is any positive integer, is known

In complex field, [14] studies local    system of 
generators and associates finite unitary groups with 
Symplectic groups.  By [15,16], A  is the smallest non-5

abelian and non-solvable group of order 60 containing 
4 conjugacy classes.  A group ∆ (2, 3, k) of the form

Moreover, the role of duality triangular groups is vital 
in characterization of symplectic groups with 
homomorphic images of Alternating group A . In 5

representational point of view of these groups can be 
studied in [21] s-duality of triangular groups and its 
modular animalises has been calculated in finite fields.

In [19], the parametrization of extended triangle groups 
for various values of k has been described it as 
subgroups of PSL(2, q). While, in [20] gives 
characterization of symplectic groups of degree 4 over 
locally finite fields of degree 2 which can be described 
in class of periodic groups.

II. PRELIMINARIES

2.1. Definition: Let ∆(2,3,5) be a  triangular group  if 

2.2. Definition: The Projective Symplectic group 
PSp (q) is the group obtained from the symplecticn

2  |a |= 2, |b|= 3, then |ab| = 5, i.e., G = {<a, b >: a = 1 = 
3 5b = (ab) }.

The PSp (q) groups are simple except for PSp (2), 2n 2

PSp (3) and PSp (2).2 4

55

Abstract-  In this paper, we investigate the influence of 
A5on PSp(4,2) and PSp(4,3) and find the triangle group 
isomorphic to smallest simple group A5 using the 
Character table of Projective Symplectic groups. Also 
discuss some interesting results by use of character 
tables of the given groups. 

I. INTRODUCTION
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 In this paper we introduced the existence of 
smallest simple alternating group A  in Projective 5

Symplectic group. All the notations and terminologies 
are standard and discussed in [1,2,3], [4,5] while [6] 
discussed the permutation representations of triangular 
groups. In [7] gave a technique how to construct 
representations of Symplectic groups of different 
degrees and then many other authors introduced and 
present extensions of smallest simple group in different 

2finite groups. In [8], proved A  as a subgroup of F (2).  5 4

In [9], the two conjugate classes of A  within S . 5 6

Recently, in [10] proved A  as a subgroup of S . [11] 5 7

introduced the same result in his excellent work in the 
groups other than symmetric groups. By [12], A  is the 5 

2smallest non-abelian simple group of order 2  .3.5 and 
the smallest non-solvable group containing four 
conjugacy classes. Now we find A  within PSp (4, 2) 5

and PSp (4, 3) by using character table of these groups. 
In [13] the projective symplectic group simply denoted 
by PSp is the group obtained from the Symplectic 
group   Sp  (q)  on factoring by the scalar matrices PSp n

is   simple except for

  PS (3) = Ap2 4

 PS (2) = Sp2 3 
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2 3 k ∆ (2, 3, k) = <a, b; a = b = (ab) = 1>

2.4. Theorem: Let G be a Projective Symplectic group 
PSp (4, 2). Then there exist two non-conjugate classes 
of simple group isomorphic to A  involved by classes 5

2 3 5C , C  and C  such that β  = γ  = 1 = (β.γ) = α  in Psp β γ α

In order to find the possibility of the existence of A  5

within PSp(4, 2), we need some additional information 
2 3of PSp (4, 2). Since A  is obtained by  a  = 2, b  = 1 and 5

5(ab)  = 1.

2 3 5∆ (2,3,5) = < a, b; a  = b  = (ab) =1 >

2.3. Definition: A triangle group is a group that can be 
realized geometrically by sequences of reflections 
across the sides of a triangle. Each triangle group is the 
symmetry group of a tilling of the Euclidean plane, the 
sphere or the hyperbolic plane by congruent triangles, 
each one a fundamental domain for the action.

Example: There exist two conjugate  classes with in S6 

using character table of S  [6].6

In order to prove the main results, we use some basic 
theorems.

group Sp (q) on factoring by the scalar matrices n

contained in that group.
In [22], Sympletic group and its  subgroups having 
commutators with influence can be studied.

(4, 2).

Proof: Let G  ≤ PSp (4, 2) be a subgroup isomorphic to 2

A . Therefore, by Lagrange's theorem A  may be a 5 5

candidate to exists within PSp (4, 2) as a subgroup.

By [17], β and γ are representations of conjugacy 
classes C  and C  of the respective elements. Let |β| = 2 β γ

and |γ| = 3 such that β γ = α, where |α| = 5 in PSp (4, 2). 
To show that A  is a subgroup of PSp (4, 2), we need to 5

use character (table 1.1).  There are 3 conjugacy classes 
of order 2, 1 conjugacy class of order 5 and 2 conjugacy 
classes of order 3. To find conjugacy classes, we use the 
basic formula. We see δ  involved but δ  and δ  are not 04 02 03

involved in the relation. The general formula for 
calculating the conjugacy classes be

#<β, γ>=

where solutions of equations β.γ =  α are obtained by  
#< β.γ >, the degree of    characters of G denoted by χi 

(1), χ (β) and characters values of ith character denoted i 

by χ  (γ) and                            be the conjugate of α. i

Note that a ϵ δ , b ϵ δ  and (ab) ϵ δ  then,04 07 11

# < 2.3 = 5 > = 720 / 16.18 [ 1 + 0 + 0 + …0 ] = 5

Clearly, there exist five triangular relations in PSp (4, 
2) and form alternating group A  within PSp (4, 2). 5

Now the only question is left to be answered here is that 
how many of such A  are conjugate?  For this, we see 5

that

−1 −1 x β x x γ x = α

Hence δ  of PSp (4, 2) and δ  also involved in the 04 07

above relation. Hence for each #< 2.3 = 5 > = 5 
relations, we have 

= 5

In order to find the possibility of the existence of A  5

within PSp(4, 3), we need some additional 
2information of PSp (4, 3). Since A  is obtained by a  = 5

3 52, b  = 1 and (ab)  = 1.

This implies that

class β  of PSp (4,2) and β is contained in (2, 3, 5) 04 07 

triangular relation. Let a ϵ δ , b ϵ δ  and (ab) ϵ  δ , 04 09 11 

# < 2.3
 = 5 > = 720/16.18 [ 1 + 0 + 0 +…0 ] 

2 3 5 < a, b; a = b = (ab) = 1 >= A   & |C (5)|  = 5. 5 G

−1  then α ∈C (5).  x (β.γ)  x = x G 
−1α x = α

| C (α)| = 5, where | α | = 5.  Hence the G 

Clearly, A exist in the relation (2,3, 5) by different 5 

conjugate values of the elements a and b. If |a| and |b|, 
then by [23] , we have  seen from Table 1.1 PSp (4,2) 
(see below) contained in PSp (4, 2), then order of ab = 
5. In order to find the number of  conjugate subgroups 
with A , we have | α | = 5 and | β | = 2, | γ | = 3 in PSp (4, 2)   5

and | α | =  |β.γ| = 5 

−1 −1so  (x β x ) (x γ x ) = α

The same α is obtained by conjugating β and γ with α = 
5 in C (α). So the total number of pairs of β and γ is G

equal in number to order of the centralizer of α.
Thus, all the 5 relations become conjugate by 
conjugating β and γ with the centralizer of α. This 
concludes that there are just two non-conjugate classes 
of simple group ∆ (2, 3, 5) @ A with in PSp (4, 2 ) as 5 

required.

2.5. Theorem: Let G be a Projective S    ymplectic 
group PSp (4, 3). Then there exist two non-conjugate 
classes of simple group isomorphic to A  involved by 5

2 3 5classes  C  ,C  and C  such that β  = γ  = 1 = (β.γ) = α  in β γ α

PSp (4, 3).

Proof: Let G  ≤ PSp (4, 3) be a subgroup isomorphic to 1

A . Therefore, by Lagrange's theorem A  may be a 5 5

candidate to exists within PSp (4, 3) as a subgroup.
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There is only one class of the elements of order 5. The 
general formula for calculating the conjugacy classes 
in the construction of triangular group is

So first or second or both involved in the relation. 
Since only even  permutations involved in the 
construction of A , so δ  is not involved in the relation 5 02

as it is odd order class. Only δ  involved in the 03

relation (2,3,5). Similarly, 4 classes of elements of 
order 3.

# <β, γ >=

By [17], β and γ are representations of conjugacy 
classes C  and C  of the respective elements. Let |β| = β γ

2 and |γ|  = 3 such that β γ = α, where |α| = 5 in PSp (4, 
3). To show that A  is a subgroup of PSp (4, 3), we 5

need to use character (Table 1.2). Clearly there are 2 
classes of elements of order   2. 

For this, we see that 

where solutions of equations β. γ  =  α are obtained by 
# < β. γ >, the degree of characters of G denoted by χ  i
(1), χ (β) & characters values of ith character denoted i 

by

χ  (γ)   and              ,i

Where                be the conjugate of α.

then,
Note that a ∈ δ , b ∈ δ and (ab) ∈ δ03 06 10 

6 4 7 4#<2.3 = 5 >= 2 .3 .5/2 .3 [2] = 5

Clearly, there exist 5 triangular relations in PSp (4, 3) 
and form alternating group 
A  within PSp (4, 3). Now the only question is left to 5

be answered here is that how many of such A  are 5

conjugate?  

|C (α)| = 5, G

where   |α| = 5.
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Now, we observe that a ∈ δ , b ∈ δ  and (ab) ∈ δ , 03 07 10
6 4 7 4  # <2 .3  = 5 > = 2 .3 .5 / 2 .3 [2] = 5. 

Hence the class δ of PSp (4, 3) and δ  also involved 03 07 

in the above relation. Thus, for each of the relation 

Hence the class δ  of PSp (4, 3) and δ  is in the 03 06

construction of (2, 3, 5) relation.

# < 2 . 3 = 5> = 5, 

we have 
2 3 5A = < a, b; a = b = (ab)  = 1 > Since # < β . γ =  α > = 5,5   

we see
 |C (5)| = 5G

Clearly, A exist in the relation (2, 3, 5 ) by different 5 

conjugate values of the elements a  and b. If |a| and |b| 
contained in PSp (4, 3),  then order of ab = 5. In      
order to find the number of conjugate subgroups with 
A , 5

we have 

thus 
−1 −1(x β x ) (x γ x ) = α  

The character table used in this theorem is given   
below in Table (2.1).   

| α | = 5 and | β | = 2, | γ | = 3 in  PSp (4, 3) and | α | = |β.γ| 
= 5 .  
then 

−1 −1this implies  that   x β x x γ   x = α 

Thus, all the 5 relations become conjugate by  
onjugating β and γ with the centralizer of α. This 
concludes that there are just two non-conjugate 
classes of simple group ∆ (2, 3, 5) @ A5 

−1α ∈C (5). x (β.γ) x = x G 

The same α is obtained by conjugating β and γ with 

−1α x = α, 

α  = 5 in C (α). G

So the total number of  pairs of β and γ is equal in     
number to order of the centralizer of α.

Within PSp (4,3) as required. 
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