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Abstract-  Complex intuitionistic fuzzy sets and N-soft 

sets are the generalized models of fuzzy sets and soft 

sets respectively, to deal with unknown and 

complicated data in the problems of real life. This 

study initiates a novel concept of complex 

intuitionistic fuzzy N-soft sets, which is a mixture of 

two different models, called complex intuitionistic 

fuzzy sets and N-soft sets. complex intuitionistic fuzzy 

N-soft sets can be seen as modified N-soft sets based 

on the complex intuitionistic fuzzy soft set. complex 

intuitionistic fuzzy N-soft set is a more generalized 

tool as compared to the existing ones. Moreover, we 

initiate some basic properties along with their basic 

operations and illustrate them with the help of 

examples. Further, we initiate the relationship of our 

novel model with existing models like complex 

intuitionistic fuzzy soft sets and soft sets. Additionally, 

to show the credibility and effectiveness of our 

initiated model, we apply it to decision-making 

problems of real life. We also define an algorithm to 

solve DM problems by using complex intuitionistic 

fuzzy N-soft sets. Finally, we compare our novel 

approach with the existing model intuitionistic fuzzy 

N-soft set to show the supremacy of our initiated 

concept. 
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I. INTRODUCTION 

 

 In all sciences such as information sciences, 

management sciences, and all fields of real life, the 

researchers and decision-makers face problems to 

cope with uncertainty and vagueness. Various 

attempts have been made to cope with this problem, 

the first attempt was made by [1] in 1965 to deal with 

the uncertainty. He introduced the notion of fuzzy sets 

(FSs) which is the generalization of the crisp set. The 

notion of FS is very flexible to express vague and 

uncertain data. In FS the membership grade (MG) lies 

in [0, 1]. In any case, it may not generally be right to 

assume that the non-membership grade (NMG) of an 

element in FS is equivalent to one minus its MG, 

because there may likewise be some grade of 

indeterminacy. Consequently, numerous authors 

modified the conception of FS such as [2] modified FS 

to intuitionistic FSs (IFSs), [3] modified to spherical 

FS, [4] expanded to T-spherical FS [5]. Also various 

researchers diagnosed numerous similarity measures 

and aggregation operators on the various modified 

conception of FS such as [6] diagnosed similarity 

measures in the setting of interval-valued picture FS, 

[7], diagnosed aggregation operators for picture FS.  

Historically, the set of real numbers was extended to 

the set of complex numbers, this extension motivated 

[8] to define the notion of complex FSs (CFSs). [9] 

initiated the notion of complex hesitant FSs. After this 

[10] initiated the concept of complex dual hesitant 

FSs.  

The majority of our conventional techniques for 

modeling, computing, and reasoning are crisp but 

researchers in environmental science, economics, 

medical science, engineering, sociology, and many 

other fields daily cope with the complicated 

information which is not crisp. So in the problems 

where uncertainties involve the researchers are not 

able to use these conventional techniques. While the 

theory of probability, fuzzy sets (FSs) [1], interval 

mathematics [11-12], intuitionistic FS [2], and rough 

sets [13-17], are supposed as mathematical techniques 

to cope with the uncertainties. But each of the theories 

has some difficulties as given by [18]. To overcome 

these difficulties [18] introduced a completely 

different notion for modeling uncertainty and 

vagueness, called soft set (SS) theory. A SS is the 

parameterized family of subsets of a universal set. In 

SS the issue of setting MG, and other associated 

issues, clearly does not occur. This makes the SS very 

easy and suitable to apply to real-life problems. SS has 

applications in different fields, such as operations 

research, perron integration, measurement theory, 

game theory, etc. [19] defined some operations in SS 
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theory. A survey of DM methods based on two classes 

of hybrid SS models were interpreted by [20]. [21] 

defined SS theoretic approach for dimensionality 

reduction. A linguistic value SS based approach to 

multiple criteria group DM was given by [22]. [23] 

defined similarity in SS theory. [24] explored T-soft 

equality relation. VIKOR and TOPSIS methods for SS 

were diagnosed by [25] and [26]. The belief interval-

valued SS was established by [27]. Some researchers 

involve FS theory in SS theory [28] interpreted the 

notion of fuzzy SS (FSS). An intuitionistic FSS (IFSS) 

was given by [29]. The theory of complex FSS (CFSS) 

was given by [30]. [31] gave the idea of complex IFSS 

(CIFSS).  

A close observation of the models with SSs shows that 

most researchers in SS theory worked on binary 

evaluation i.e; either {0,1} or [0, 1] [32, 33]. Although, 

there are a lot of real-life problems where data is in the 

discrete structure or non-binary, for example, hotels 

compared by websites, dramas, etc. which cannot 

handle by existing methods of SS. From another point 

of view, [34] defined the ternary voting system. The 

notion of multi-SS was given by [35]. Further, [36] 

interpreted a notion of N-soft set (N-SS). Then, [37] 

utilized N-SS in the setting of rough set. [38] 

diagnosed N-soft topology. To cope with uncertain 

data [39] defined fuzzy N-SS (FN-SS). [40] diagnosed 

the multi-fuzzy N-SS. [41] also gave the notion of 

intuitionistic FN-SS (IFN-SS).  [42] diagnosed 

complex fuzzy N-SS. IFN-SS is an efficient tool to 

cope with uncertainty in a single dimension. IFN-SS 

cannot help in DM where two-dimensional 

information is involved. IFN-SS cannot carry 

additional information for example a family wants to 

select a place for a trip in 4 places. A team “A” of 

experts gives rating and grading to these places base 

on the parameters. But what will happen if the family 

says that they also want to know the view of team “B” 

of experts. In this case, IFN-SS cannot provide them 

with this additional information. To overcome this 

difficulty in this manuscript, we initiate the novel 

model called complex intuitionistic fuzzy N-soft sets 

(CIFN-SS) which deals with complicated and two-

dimensional information. As the novel model 

combining CIFSS with N-SS, CIFN-SS could be 

utilized in a number of various fields. The CIFN-SSs 

is the generalization so one can get IFN-SSs, N-SSs, 

and SSs from CIFN-SSs.  

This manuscript is settled as follows: In section 2 we 

review some basic definitions and properties of FSs, 

IFSs, CFSs, CIFSs, SSs, IFSSs, CFSSs, and IFN-SS. 

In section 3, we provide our novel model CIFN-SS 

along with some basic properties and illustrate them 

with the help of examples. Additionally, we initiate the 

relationship of our novel model with an existing model 

like CIFSSs and SS in the same section. In section 4 

of this manuscript, we define an algorithm to solve 

DM problems using CIFN-SS. We also show the 

effectiveness of our initiated notion and its real-life 

application in section 4. We do a comparison of our 

initiated work with the existing method in section 5. In 

the end, in section 6, the conclusion of the work done 

in this manuscript is given.  

 

II. PRELIMINARIES 

 

 In this Section, of the manuscript, we revise 

some fundamental definitions of FSs, IFS, CFSs, 

CIFSs, SSs, N-SSs, and intuitionistic FN-SSs (IFN-

SS). The basic properties of the above methods are 

also discussed in detail. Throughout this article, the 

symbols 𝔅 ≠ ∅ be universe set and 𝒰 be the set of 

parameters.  

Definition 1: [1] A fuzzy set (FS) is denoted and given 

as 

𝔽 = {(𝑥, 𝛾𝑀(𝑥)): 𝑥 ∈ 𝔅},  

where 𝛾𝑀: 𝔅 → [0,1] with a condition 0 ≤ 𝛾𝑀(𝑥) ≤
1. 

 

Definition 2: [1] Let 𝔽 = (𝑥𝑖 , 𝛾𝔽
𝑀(𝑥𝑖)) and 𝔾 =

(𝑥𝑖 , 𝛾𝔾
𝑀(𝑥𝑖)), 𝑖 = 1,2,3, … , 𝑛 are two fuzzy numbers 

(FNs). Then 

1. 𝔽 = 𝔾 ⇔ 𝛾𝔽
𝑀(𝑥𝑖) = 𝛾𝔾

𝑀(𝑥𝑖), 𝑖 = 1,2, … , 𝑛; 

2. 𝔽 ⊆ 𝔾 ⇔ 𝛾𝔽
𝑀(𝑥𝑖) ≤ 𝛾𝔾

𝑀(𝑥𝑖), 𝑖 = 1,2, … , 𝑛; 

3. 𝔽𝑐 = (𝑥𝑖 , 1 − 𝛾𝔽
𝑀(𝑥𝑖)); 

4. 𝔽⋃𝔾 = 𝔽⋁𝔾 = (𝑥𝑖 , max(𝛾𝔽
𝑀(𝑥𝑖), 𝛾𝔾

𝑀(𝑥𝑖))), 𝑖 =

1,2,3, … , 𝑛; 

5. 𝔽⋂𝔾 = 𝔽⋀𝔾 = (𝑥𝑖 , min(𝛾𝔽
𝑀(𝑥𝑖), 𝛾𝔾

𝑀(𝑥𝑖))), 𝑖 =

1,2,3, … , 𝑛. 

Definition 3: [2] An intuitionistic FS (IFS) is denoted 

and given as 

𝕀 = {(𝑥, (𝛾𝑀(𝑥), 𝛾𝑁(𝑥))) : 𝑥 ∈ 𝔅},  

where 𝛾𝑀: 𝔅 → [0,1], 𝛾𝑁: 𝔅 → [0,1] represents the 

membership grade (MG) and non-membership grade 

(NMG) for each 𝑥 ∈ 𝔅, with a condition that 0 ≤
𝛾𝑀(𝑥)  + 𝛾𝑁(𝑥) ≤ 1. 

Definition 4: [2] Let 𝕀 = (𝑥𝑖 , (𝛾𝕀
𝑀(𝑥𝑖), 𝛾𝕀

𝑁(𝑥𝑖))) and 

𝕂 = (𝑥𝑖 , (𝛾𝕂
𝑀(𝑥𝑖), 𝛾𝕂

𝑁(𝑥𝑖))) , 𝑖 = 1,2,3, … , 𝑛 are two 

IF numbers (IFNs). Then 

1. 𝕀 = 𝕂 ⇔ 𝛾𝕀
𝑀(𝑥𝑖) = 𝛾𝕂

𝑀(𝑥𝑖) 𝑎𝑛𝑑 𝛾𝕀
𝑁(𝑥𝑖) =

𝛾𝕂
𝑁(𝑥𝑖), 𝑖 = 1,2, … , 𝑛; 

2. 𝕀 ⊆ 𝕂 ⇔ 𝛾𝕀
𝑀(𝑥𝑖) ≤ 𝛾𝕂

𝑀(𝑥𝑖) 𝑎𝑛𝑑 𝛾𝕀
𝑁(𝑥𝑖) ≥

𝛾𝕂
𝑁(𝑥𝑖)𝑖 = 1,2, … , 𝑛; 

3. 𝕀𝑐 = 𝑥𝑖 , (𝛾𝕀
𝑁(𝑥𝑖), 𝛾𝕀

𝑀(𝑥𝑖)); 

4. 𝕀⋃𝕂 = 𝕀⋁𝕂 =

(𝑥𝑖 , max(𝛾𝕀
𝑀(𝑥𝑖), 𝛾𝕂

𝑀(𝑥𝑖)),min(𝛾𝕀
𝑁(𝑥𝑖), 𝛾𝕂

𝑁(𝑥𝑖))), 

𝑖 = 1,2,3, … , 𝑛; 
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5. 𝕀⋂𝕂 = 𝕀⋀𝕂 =

(𝑥𝑖 , min(𝛾𝕀
𝑀(𝑥𝑖), 𝛾𝕂

𝑀(𝑥𝑖)),max(𝛾𝕀
𝑁(𝑥𝑖), 𝛾𝕂

𝑁(𝑥𝑖))), 

𝑖 = 1,2,3, … , 𝑛. 

Definition 5: [8] A complex FS (CFS) is denoted and 

given as 

𝕊 = {(𝑥, 𝜇𝑀(𝑥)): 𝑥 ∈ 𝔅} 

where 𝜇𝑀 = 𝛾𝑀𝑒
𝑖2𝜋(𝜔

𝛾𝑀
)
 with a condition 0 ≤

𝛾𝑀, 𝜔𝛾𝑀 ≤ 1. 

Definition 6: [8] Let 𝔽 = (𝑥𝑖 , 𝛾𝔽
𝑀(𝑥𝑖)𝑒

𝜄2𝜋(𝜔
𝛾𝔽
𝑀(𝑥𝑖))

) 

and 𝔾 = (𝑥𝑖 , 𝛾𝔾
𝑀(𝑥𝑖)𝑒

𝜄2𝜋(𝜔
𝛾𝔾
𝑀(𝑥𝑖))

) , 𝑖 = 1,2,3, … , 𝑛 

are two complex fuzzy numbers (CFNs). Then 

1. 𝔽 = 𝔾 ⇔ 𝜇𝔽
𝑀(𝑥𝑖) = 𝜇𝔾

𝑀(𝑥𝑖) 𝑖. 𝑒. 𝛾𝔽
𝑀(𝑥𝑖) =

𝛾𝔾
𝑀(𝑥𝑖), 𝜔𝛾𝔽

𝑀(𝑥𝑖) = 𝜔𝛾𝔾
𝑀(𝑥𝑖), 𝑖 = 1,2, … , 𝑛; 

2. 𝔽 ⊆ 𝔾 ⇔ 𝜇𝔽
𝑀(𝑥𝑖) ≤ 𝜇𝔾

𝑀(𝑥𝑖) 𝑖. 𝑒. 𝛾𝔽
𝑀(𝑥𝑖) ≤

𝛾𝔾
𝑀(𝑥𝑖), 𝜔𝛾𝔽

𝑀(𝑥𝑖) ≤ 𝜔𝛾𝔾
𝑀(𝑥𝑖), 𝑖 = 1,2, … , 𝑛; 

3. 𝔽𝑐 = 1 − 𝜇𝑀=(1 − 𝛾𝔽
𝑀)𝑒

𝑖2𝜋(1−(𝜔
𝛾𝔽
𝑀))

; 

4. 𝔽⋃𝔾 = 𝔽⋁𝔾 = (𝑥𝑖 , max(𝜇𝔽
𝑀(𝑥𝑖), 𝜇𝔾

𝑀(𝑥𝑖))) =

(

 𝑥𝑖 , max( 𝛾𝔽
𝑀(𝑥𝑖), 𝛾𝔾

𝑀(𝑥𝑖))𝑒
𝜄2𝜋max(

𝜔
𝛾𝔽
𝑀(𝑥𝑖),

𝜔
𝛾𝔾
𝑀(𝑥𝑖)

)

)

 , 𝑖 =

1,2,3, … , 𝑛; 

5. 𝔽⋂𝔾 = 𝔽⋀𝔾 = (𝑥𝑖 , min(𝜇𝔽
𝑀(𝑥𝑖), 𝜇𝔾

𝑀(𝑥𝑖))) =

(

 𝑥𝑖 , min( 𝛾𝔽
𝑀(𝑥𝑖), 𝛾𝔾

𝑀(𝑥𝑖))𝑒
𝜄2𝜋min(

𝜔
𝛾𝔽
𝑀(𝑥𝑖),

𝜔
𝛾𝔾
𝑀(𝑥𝑖)

)

)

 , 𝑖 =

1,2,3, … , 𝑛; 

Definition 7: [43] A complex intuitionistic FS (CIFS) 

is denoted and given as 

𝕋 = {(𝑥, (𝜇𝑀(𝑥), 𝜇𝑁(𝑥))) : 𝑥 ∈ 𝔅} 

where 𝜇𝑀 = 𝛾𝑀𝑒
𝑖2𝜋(𝜔

𝛾𝑀
)
, 𝜇𝑁 = 𝛾𝑁𝑒

𝑖2𝜋(𝜔
𝛾𝑁
)
 are 

complex MG (CMG) and complex NMG (CNMG) 

respectively, with a condition 0 ≤
𝛾𝑀, 𝜔𝛾𝑀 , 𝛾

𝑁 , 𝜔𝛾𝑁 ≤ 1.  

Definition 8: [43]  Let 𝔽 =

(𝑥𝑖 , (𝛾𝔽
𝑀(𝑥𝑖)𝑒

𝜄2𝜋(𝜔
𝛾𝔽
𝑀(𝑥𝑖))

, 𝛾𝔽
𝑁(𝑥𝑖)𝑒

𝜄2𝜋(𝜔
𝛾𝔽
𝑁(𝑥𝑖))

)) 

and 𝔾 =

(𝑥𝑖 , (𝛾𝔾
𝑀(𝑥𝑖)𝑒

𝜄2𝜋(𝜔
𝛾𝔾
𝑀(𝑥𝑖))

, 𝛾𝔾
𝑁(𝑥𝑖)𝑒

𝜄2𝜋(𝜔
𝛾𝔾
𝑁(𝑥𝑖))

)),  

𝑖 = 1,2,3, … , 𝑛 are two CIF numbers (CIFNs). Then 

1. 𝔽𝑐 = (𝑥𝑖 , (𝜇𝔽
𝑁(𝑥𝑖), 𝜇𝔽

𝑀(𝑥𝑖))) =

(𝑥𝑖 , (𝛾𝔽
𝑁(𝑥𝑖)𝑒

𝜄2𝜋(𝜔
𝛾𝔽
𝑁(𝑥𝑖))

, 𝛾𝔽
𝑀(𝑥𝑖)𝑒

𝜄2𝜋(𝜔
𝛾𝔽
𝑀(𝑥𝑖))

)),  

𝑖 = 1,2,3, … , 𝑛 

2. 𝔽⋃𝔾 = 𝔽⋁𝔾 =

(

 
 
 
 
 
 
 

𝑥𝑖 ,

𝑥𝑖 , (
max(𝜇𝔽

𝑀(𝑥𝑖), 𝜇𝔾
𝑀(𝑥𝑖)) ,

min(𝜇𝔽
𝑁(𝑥𝑖), 𝜇𝔾

𝑁(𝑥𝑖))
) =

(

 
 
 
 

max( 𝛾𝔽
𝑀(𝑥𝑖), 𝛾𝔾

𝑀(𝑥𝑖))

. 𝑒
𝜄2𝜋max(𝜔

𝛾𝔽
𝑀(𝑥𝑖),𝜔𝛾𝔾

𝑀(𝑥𝑖))

,

 min( 𝛾𝔽
𝑁(𝑥𝑖), 𝛾𝔾

𝑁(𝑥𝑖))

. 𝑒
𝜄2𝜋min(𝜔

𝛾𝔽
𝑁(𝑥𝑖),𝜔𝛾𝔾

𝑁(𝑥𝑖))
)

 
 
 
 

)

 
 
 
 
 
 
 

, 𝑖 =

1,2,3, … , 𝑛 

3. 𝔽⋂𝔾 = 𝔽⋀𝔾 =

(

 
 
 
 
 
 
 

𝑥𝑖 ,

𝑥𝑖 , (
min(𝜇𝔽

𝑀(𝑥𝑖), 𝜇𝔾
𝑀(𝑥𝑖))

,max(𝜇𝔽
𝑁(𝑥𝑖), 𝜇𝔾

𝑁(𝑥𝑖))
) =

(

 
 
 
 

min( 𝛾𝔽
𝑀(𝑥𝑖), 𝛾𝔾

𝑀(𝑥𝑖))

𝑒
𝜄2𝜋min(𝜔

𝛾𝔽
𝑀(𝑥𝑖),𝜔𝛾𝔾

𝑀(𝑥𝑖))

,

 max( 𝛾𝔽
𝑁(𝑥𝑖), 𝛾𝔾

𝑁(𝑥𝑖))

𝑒
𝜄2𝜋max(𝜔

𝛾𝔽
𝑁(𝑥𝑖),𝜔𝛾𝔾

𝑁(𝑥𝑖))
)

 
 
 
 

)

 
 
 
 
 
 
 

, 𝑖 =

1,2,3, … , 𝑛 

Definition 9: [18] A pair (𝐽, 𝒱) represents a SS over 𝔅 

where 𝐽: 𝒱 → 𝑃(𝔅), be set-valued function and 𝒱 ⊆
𝒰.  

Definition 10: [19] Let (𝐽1, 𝒱1) and (𝐽2, 𝒱2) be two SSs 

with 𝒱1 ∩ 𝒱2 ≠ ∅, then their restricted union and 

intersection are denoted and given as follows: 
(𝐽1, 𝒱1) ∪𝑟 (𝐽2, 𝒱2) = (𝛼, 𝒱1 ∩ 𝒱2) ∀ 𝓋 ∈ 𝒱1 ∩ 𝒱2 ⟹

𝛼(𝓋) = 𝐽1(𝓋) ∪ 𝐽2(𝓋). 
(𝐽1, 𝒱1) ∩𝑟 (𝐽2, 𝒱2) = (𝛽, 𝒱1 ∩ 𝒱2) where 𝛽(𝓋) =

𝐽1(𝓋) ∩ 𝐽2(𝓋)∀𝓋 ∈ 𝒱1 ∩ 𝒱2. 

Definition 11: [19] Let (𝐽1, 𝒱1) and (𝐽2, 𝒱2) be two SSs 

with 𝒱1 ∩ 𝒱2 ≠ ∅, then their extended union and 

intersection are denoted and given as follows: 

(𝐽1, 𝒱1) ∪𝑒 (𝐽1, 𝒱2) = (𝛼, 𝒱1 ∪ 𝒱2) where ∀ 𝓋 ∈ 𝒱1 ∪

𝒱2 ⟹ 𝛼(𝓋) = {

𝐽1(𝓋) 𝑖𝑓 𝓋 ∈ 𝒱1\𝒱2
𝐽2(𝓋) 𝑖𝑓 𝓋 ∈ 𝒱2\𝒱1

𝐽1(𝓋) ∪ 𝐽2(𝓋) 𝓋 ∈ 𝒱1 ∪ 𝒱2

 

(𝐽1, 𝒱1) ∩𝑒 (𝐽1, 𝒱2) = (𝛽, 𝒱1 ∪ 𝒱2) where ∀𝓋 ∈ 𝒱1 ∪

𝒱2 ⟹ 𝛽 (𝓋) = {

𝐽1(𝓋) 𝑖𝑓 𝓋 ∈ 𝒱1\𝒱2
𝐽2(𝓋) 𝑖𝑓 𝓋 ∈ 𝒱2\𝒱1

𝐽1(𝓋) ∩ 𝐽2(𝓋) 𝓋 ∈ 𝒱1 ∪ 𝒱2

 

Definition 12: [36] A triplet (𝐽, 𝒱, 𝑁) represents an N-

soft set (N-SS) over 𝔅 if 𝐽: 𝒱 → 2𝔅×𝔒 = 𝑃(𝔅 ×
𝔒), 𝒱 ⊆ 𝑄 with the property that for each 𝓋 ∈ 𝒱 and 

∃ a unique ((𝔟, 𝔬𝓋) ∈ 𝑃(𝔅 × 𝔒)) such that (𝔟, 𝔬𝓋) ∈
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𝐽(𝓋), 𝔟 ∈ 𝔅, 𝔬𝓋 ∈ 𝔒 = {0, 1, 2, … , 𝑁 − 1} be ordered 

grades set.  

Definition 13: [36] Let (𝐽1, 𝒱1, 𝑁1) and (𝐽2, 𝒱2, 𝑁2) be 

two N-SSs with 𝒱1 ∩ 𝒱2 ≠ ∅, then their restricted 

union and intersection are denoted and given as 

follows: 
(𝐽, 𝒱1, 𝑁1) ∪𝑅 (𝐽2, 𝒱2 , 𝑁1)

= (𝛿, 𝒱1 ∩ 𝒱2, max(𝑁1, 𝑁2)) 
where ∀𝓋 ∈ 𝒱1 ∩ 𝒱2 & 𝔟 ∈ 𝔅 ⟹ (𝔟, 𝔬𝓋) ∈ 𝛿(𝓋) ⇔
𝔬𝓋 = max(𝔬𝓋

1 , 𝔬𝓋
2 ) , 𝑖𝑓 (𝔟, 𝔬𝓋

1 ) ∈ 𝐽1(𝓋) & (𝔟, 𝔬𝓋
2 ) ∈

𝐽2(𝓋).  

(𝐽, 𝒱1, 𝑁1) ∩𝑅 (𝐺, 𝐵, 𝑁1) = (𝜂, 𝐴 ∩ 𝐵,min(𝑁1, 𝑁2)) 
where ∀𝓋 ∈ 𝒱1 ∩ 𝒱2 & 𝔟 ∈ 𝔅 ⟹ (𝔟, 𝔬𝓋) ∈ 𝜂(𝓋) ⇔
𝔬𝓋 = min(𝔬𝓋

1 , 𝔬𝓋
2 ) , 𝑖𝑓 (𝔟, 𝔬𝓋

1 ) ∈ 𝐽1(𝓋) & (𝔟, 𝔬𝓋
2 ) ∈

𝐽2(𝓋).  

Definition 14: [36] Let (𝐽1, 𝒱1, 𝑁1) and (𝐽2, 𝒱2, 𝑁2) be 

two N-SSs. Then their extended union and intersection 

are denoted and given as: 
(𝐽1, 𝒱1, 𝑁1) ∪𝐸 (𝐽2, 𝒱2, 𝑁2)

= (𝛿, 𝒱1 ∪ 𝒱2, max(𝑁1, 𝑁2)) 
where 𝛿(𝓋) =

{
 

 
𝐽(𝓋) 𝑖𝑓 𝓋 ∈ 𝒱1\𝒱2
𝐺(𝓋) 𝑖𝑓 𝓋 ∈ 𝒱2\𝒱1

(𝔟, 𝔬𝓋)/𝔬𝓋 = max(𝔬𝓋
1 , 𝔬𝓋

2 ) (
(𝔟, 𝔬𝓋

1 ) ∈ 𝐽1(𝓋)

  (𝔟, 𝔬𝓋
2 ) ∈ 𝐽2(𝓋)

)

 

 
(𝐽1, 𝒱1, 𝑁1) ∩𝑒 (𝐽2, 𝒱2, 𝑁2) = (𝜂, 𝒱1 ∪

𝒱2, max(𝑁1, 𝑁2))  

where 𝜂(𝓋) =

{
 

 
𝐽(𝓋) 𝑖𝑓 𝓋 ∈ 𝒱1\𝒱2
𝐺(𝓋) 𝑖𝑓 𝓋 ∈ 𝒱2\𝒱1

(𝔟, 𝔬𝓋)/𝔬𝓋 = min(𝔬𝓋
1 , 𝔬𝓋

2 ) (
(𝔟, 𝔬𝓋

1 ) ∈ 𝐽1(𝓋)

  (𝔟, 𝔬𝓋
2 ) ∈ 𝐽2(𝓋)

)

.        

Definition 15: [29] A pair (𝐽′, 𝒱) characterized an 

intuitionistic fuzzy SS (IFSS) over 𝔅 if 𝐽′: 𝒱 →
𝐼𝐹𝑆(𝔅), 𝒱 ⊆ 𝒰, where 𝐼𝐹𝑆(𝔅) contains the set of all 

IFS of 𝔅.  

Definition 16: [30] A pair (𝐽′′, 𝒱) represents a 

complex fuzzy SS (CFSS) over 𝔅 if 𝐽′′: 𝒱 →
𝐶𝐹𝑆(𝔅), 𝒱 ⊆ 𝒰, where 𝐶𝐹𝑆(𝔅) contains the set of all 

complex FS of 𝔅. 

Definition 17: [31] A pair (𝐽′′′, 𝒱) characterize a 

complex IFSS (CIFSS) over 𝔅 if 𝐽′′′: 𝒱 →
𝐶𝐼𝐹𝑆(𝔅), 𝒱 ⊆ 𝒰, where 𝐶𝐼𝐹𝑆(𝔅) contains the set of 

all complex intuitionistic FS of 𝔅. 

Definition 18: [41] Let 𝒱 ⊆ 𝒰 and 𝔒 =
{0, 1, 2, … , 𝑁 − 1} be an ordered grades set with 𝑁 ∈
 {2, 3,· · · }. A pair (𝛾, ((𝐽, 𝒱, 𝑁))) is said to be IFN-SS 

where (𝐽, 𝒱, 𝑁) is an N-SS on 𝔅, and 𝛾 maps each 

parameter 𝓋 ∈ 𝒱 with an IFS ℬ on 𝐽(𝓋) ⊆ 𝑃(𝔅 ×
𝔒). This means that 𝛾: 𝒱 → 𝐼𝐹𝔅×𝔒, where 𝐼𝐹𝔅×𝔒 is 

the collection of all IFS over 𝔅 ×𝔒.   

Definition 19: [41] Let (𝛾1, (𝐽1, 𝒱, 𝑁1)) and 

(𝛾1, (𝐽2, 𝒱2, 𝑁2)) be two IFN-SS. Then their restricted 

union and intersection are designated and defined by: 

(𝛾1, (𝐽1, 𝒱1, 𝑁1)) ∪ℝ (𝛾2, (𝐽2, 𝒱2, 𝑁2)) = (𝜗, 𝒱1 ∩ 𝒱2, max(𝑁1, 𝑁2)), where 

∀𝓋𝑘 ∈ 𝒱1 ∩ 𝒱2 & 𝔟𝑗 ∈ 𝔅, ((𝔟𝑗 , 𝔬𝓋𝑘), 𝒶, 𝒷) ∈ 𝜗(𝓋𝑘)

⇔ (𝔬𝓋𝑘 = max(𝔬𝓋𝑘
1 , 𝔬𝓋𝑘

2 ) , 𝒶 = max (𝛾1
𝑀(𝔟𝑗 , 𝔬𝓋𝑘

1 ), 𝛾2
𝑀(𝔟𝑗 , 𝔬𝓋𝑘

2 )) , 𝒷

= min (𝛾1
𝑁(𝔟𝑗 , 𝔬𝓋𝑘

1 ), 𝛾2
𝑁(𝔟𝑗 , 𝔬𝓋𝑘

2 )) 𝑖𝑓 ((𝔟𝑗 , 𝔬𝓋𝑘), 𝛾1
𝑀(𝔟𝑗 , 𝔬𝓋𝑘

1 ), 𝛾1
𝑁(𝔟𝑗 , 𝔬𝓋𝑘

1 ))

∈ 𝐽1(𝓋𝑘) and ((𝔟𝑗 , 𝔬𝓋𝑘), 𝛾1
𝑀(𝔟𝑗 , 𝔬𝓋𝑘

1 ), 𝛾1
𝑁(𝔟𝑗 , 𝔬𝓋𝑘

1 )) ∈ 𝐽1(𝓋𝑘)) 

(𝛾1, (𝐽1, 𝒱1, 𝑁1)) ∩ℝ (𝛾2, (𝐽2, 𝒱2, 𝑁2)) = (𝜀, 𝒱1 ∩ 𝒱2, min(𝑁1, 𝑁2)), where 

∀𝓋𝑘 ∈ 𝒱1 ∩ 𝒱2 & 𝔟𝑗 ∈ 𝔅, ((𝔟𝑗 , 𝔬𝓋𝑘), 𝒶, 𝒷) ∈ 𝜀(𝓋𝑘)

⇔ (𝔬𝓋𝑘 = min(𝔬𝓋𝑘
1 , 𝔬𝓋𝑘

2 ) , 𝒶 = min (𝛾1
𝑀(𝔟𝑗 , 𝔬𝓋𝑘

1 ), 𝛾2
𝑀(𝔟𝑗 , 𝔬𝓋𝑘

2 )) , 𝒷

= max (𝛾1
𝑁(𝔟𝑗 , 𝔬𝓋𝑘

1 ), 𝛾2
𝑁(𝔟𝑗 , 𝔬𝓋𝑘

2 )) 𝑖𝑓 ((𝔟𝑗 , 𝔬𝓋𝑘), 𝛾1
𝑀(𝔟𝑗 , 𝔬𝓋𝑘

1 ), 𝛾1
𝑁(𝔟𝑗 , 𝔬𝓋𝑘

1 ))

∈ 𝐽1(𝓋𝑘) and ((𝔟𝑗 , 𝔬𝓋𝑘), 𝛾1
𝑀(𝔟𝑗 , 𝔬𝓋𝑘

1 ), 𝛾1
𝑁(𝔟𝑗 , 𝔬𝓋𝑘

1 )) ∈ 𝐽1(𝓋𝑘))

 Definition 20: [41] Let (𝛾1, (𝐽1, 𝒱1, 𝑁1)) and 

(𝛾2, (𝐽2, 𝒱2 , 𝑁2)) be two IFN-SSs. Then their extended 

union and intersection are denoted and defined by:  

(𝛾1, (𝐽1, 𝒱1, 𝑁1)) ∪𝔼 (𝛾2, (𝐽2, 𝒱2, 𝑁2)) = (𝜗, 𝒱1 ∪ 𝒱2, max(𝑁1, 𝑁2)) where ∀ 𝓋𝑘 ∈ 𝒱1 ∪ 𝒱2, 𝔟𝑗 ∈ 𝔅  
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𝜗(𝓋𝑘) =

{
  
 

  
 

𝛾1(𝓋𝑘) 𝑖𝑓 𝓋𝑘 ∈ 𝒱1\𝒱2
𝛾2(𝓋𝑘) 𝑖𝑓 𝓋𝑘 ∈ 𝒱2\𝒱1

((𝔟𝑗 , 𝔬𝓋𝑘), 𝒶, 𝒷)                

(

 
 

𝑠. 𝑡 𝔬𝓋𝑘 = max(𝔬𝓋𝑘
1 , 𝔬𝓋𝑘

2 ) , 𝒶 = max (𝛾1
𝑀(𝔟𝑗 , 𝔬𝓋𝑘

1 ), 𝛾2
𝑀(𝔟𝑗 , 𝔬𝓋𝑘

2 )) ,

𝒷 = min (𝛾1
𝑁(𝔟𝑗 , 𝔬𝓋𝑘

1 ), 𝛾2
𝑁(𝔟𝑗 , 𝔬𝓋𝑘

2 )) 𝑖𝑓 ((𝔟𝑗 , 𝔬𝓋𝑘), 𝛾1
𝑀(𝔟𝑗 , 𝔬𝓋𝑘

1 ), 𝛾1
𝑁(𝔟𝑗 , 𝔬𝓋𝑘

1 )) 

∈ 𝐽1(𝓋𝑘)and ((𝔟𝑗 , 𝔬𝓋𝑘), 𝛾1
𝑀(𝔟𝑗 , 𝔬𝓋𝑘

1 ), 𝛾1
𝑁(𝔟𝑗 , 𝔬𝓋𝑘

1 )) ∈ 𝐽1(𝓋𝑘) )

 
 

 (𝛾1, (𝐽1, 𝒱1, 𝑁1)) ∩𝔼 (𝛾1, (𝐽2, 𝒱2 , 𝑁2)) = (𝜀, 𝒱1 ∪ 𝒱2, min(𝑁1, 𝑁2)) where ∀ 𝓋𝑘 ∈ 𝒱1 ∪ 𝒱2, 𝔟𝑗 ∈ 𝔅 

𝜀(𝓋𝑘)

=

{
  
 

  
 

𝛾1(𝓋𝑘) 𝑖𝑓 𝓋𝑘 ∈ 𝒱1\𝒱2
𝛾2(𝓋𝑘) 𝑖𝑓 𝓋𝑘 ∈ 𝒱2\𝒱1

((𝔟𝑗 , 𝔬𝓋𝑘), 𝒶, 𝒷)           

(

 
 

𝑠. 𝑡 𝔬𝓋𝑘 = min(𝔬𝓋𝑘
1 , 𝔬𝓋𝑘

2 ) , 𝒶 = min (𝛾1
𝑀(𝔟𝑗 , 𝔬𝓋𝑘

1 ), 𝛾2
𝑀(𝔟𝑗 , 𝔬𝓋𝑘

2 )) ,

𝒷 = max (𝛾1
𝑁(𝔟𝑗 , 𝔬𝓋𝑘

1 ), 𝛾2
𝑁(𝔟𝑗 , 𝔬𝓋𝑘

2 )) 𝑖𝑓 ((𝔟𝑗 , 𝔬𝓋𝑘), 𝛾1
𝑀(𝔟𝑗 , 𝔬𝓋𝑘

1 ), 𝛾1
𝑁(𝔟𝑗 , 𝔬𝓋𝑘

1 )) 

∈ 𝐽1(𝓋𝑘)and ((𝔟𝑗 , 𝔬𝓋𝑘), 𝛾1
𝑀(𝔟𝑗 , 𝔬𝓋𝑘

1 ), 𝛾1
𝑁(𝔟𝑗 , 𝔬𝓋𝑘

1 )) ∈ 𝐽1(𝓋𝑘) )

 
 

 

III. CONSTRUCTION OF COMPLEX 

INTUITIONISTIC FUZZY N-SOFT SETS 

 

 In this part of the manuscript, we interpret the 

novel idea of CIFN-SSs and some basic properties of 

CIFN-SSs. Further, we will discuss its functional 

representation in this section. Throughout this article, 

𝔅 be a universe set, 𝒰 be a set of parameters and 𝜌 =

(𝜇𝑀, 𝜇𝑁), where 𝜇𝑀 = 𝛾𝑀𝑒
𝑖2𝜋(𝜔

𝛾𝑀
)
 be a CMG and 

𝜇𝑁 = 𝛾𝑁𝑒
𝑖2𝜋(𝜔

𝛾𝑁
)
 be a (CNMG).  

We interpret the concept of CIFN-SSs.    

Definition 21: Let 𝔅 ≠ ∅ be a set of objects, 𝒰 be the 

set of parameters and 𝒱 ⊆ 𝒰. Let 𝔒 = {0, 1, 2, … , 𝑁 −
1} be an ordered grades set with 𝑁 ∈  {2, 3,· · · }. A 

pair (𝜌,ℋ) is said to be CIFN-SS when ℋ = (𝐽, 𝒱, 𝑁) 
is an N-SS on 𝔅, and 𝜌 maps each parameter 𝓋 ∈ 𝒱 

with a CIFS ℬ on 𝐽(𝓋) ⊆ 𝑃(𝔅 × 𝔒). This means that 

𝜌: 𝒱 → 𝐶𝐼𝐽𝔅×𝔒, where 𝐶𝐼𝐽𝔅×𝔒 represent the 

collection of all CIFS over 𝔅 ×𝔒.   

With the help of the following example, we will 

explain the notion of our proposed model. Moreover, 

we will see a helpful tabular representation for CIFN-

SSs.  

Example 1: Let 𝔅 = {𝔟1, 𝔟2, 𝔟3, 𝔟4, 𝔟5, 𝔟6} be set of 6 

public transport buses and 𝒱 = {𝓋1 =
𝐼𝑛𝑐𝑜𝑚𝑒 𝑜𝑓 𝑏𝑢𝑠, 𝓋2 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑠𝑠𝑎𝑛𝑔𝑒𝑟, 𝓋3 = 𝑠ℎ𝑜𝑟𝑡 𝑟𝑜𝑢𝑡𝑒, 𝓋4 =
𝑠𝑎𝑣𝑖𝑛𝑔 𝑓𝑢𝑒𝑙} be set of parameters, based on these 

parameters an expert allocate grading to the buses. The 

information obtained from real data is given in table 

(1)  

 

 

 

 

 

 

Table 1. Information obtained from real data for 

example 1. 
𝕭 𝓿𝟏 𝓿𝟐 𝓿𝟑 𝓿𝟒 

𝖇𝟏 ×× ××× × × 

𝖇𝟐 ×××× ×× ×× ×× 

𝖇𝟑 ∘ × ××× ×××× 

𝖇𝟒 ×××× ××× ×××× ××××× 

𝖇𝟓 ∘ ××××× ∘ ×× 

𝖇𝟔 ×× × ××× ×××× 

    

where 

Five cross marks represent ‘ Outstanding’, 

Four cross marks represent ‘Excellent’, 

Three cross marks represent ‘Very Good’, 

Two cross marks represent ‘Good’, 

One cross mark represents ‘Normal’, 

The hole represents ‘Poor’, 

The set 𝔒 = {0, 1, 2,3,4,5} can undoubtedly link with 

the cross marks presented in table (1), where 

0 denotes “∘”,  

1 denotes “×”, 

2 denotes “××”, 

3 denotes “×××”, 

4 denotes “××××”, 

5 denotes “×××××”, 

The tabular representation of 6-SS is described in table 

(2). 

 

Table 2. The tabular form of 6-SS interpreted in for 

example 1. 

𝕭 𝓿𝟏 𝓿𝟐 𝓿𝟑 𝓿𝟒 

𝖇𝟏 2 3 1 1 

𝖇𝟐 4 2 2 2 

𝖇𝟑 0 1 3 4 

𝖇𝟒 4 3 4 5 

𝖇𝟓 0 5 0 2 

𝖇𝟔 2 1 3 4 
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The grading criteria for CMG and CNMG of elements 

of the set 𝔅 are presented below.  

0.0 ≤ ∆𝜇𝑀(𝔟) < 0.15 when 𝔬 = 0; 

0.15 ≤ ∆𝜇𝑀(𝔟) < 0.35 when 𝔬 = 1; 

0.35 ≤ ∆𝜇𝑀(𝔟) < 0.55 when 𝔬 = 2; 

0.55 ≤ ∆𝜇𝑀(𝔟) < 0.75 when 𝔬 = 3; 

0.75 ≤ ∆𝜇𝑀(𝔟) < 0.90 when 𝔬 = 4; 

0.90 ≤ ∆𝜇𝑀(𝔟) ≤ 1.0 when 𝔬 = 5; 

Where ∆𝜇𝑀(𝔟) =
𝛾𝑀(𝔟)+𝜔

𝛾𝑀
(𝔟)

2
, and 0 ≤ 𝜇𝑀 + 𝜇𝑁 ≤

1. Therefore, the CIF6-SS are given below by using 

def (21).  

𝜌(𝓋1) =

{
 
 

 
 ((𝔟1, 2), (0.4𝑒

𝑖2𝜋(0.45), 0.2𝑒𝑖2𝜋(0.5))) , ((𝔟2, 4), (0.8𝑒
𝑖2𝜋(0.75), 0.1𝑒𝑖2𝜋(0.2))) ,

((𝔟3, 0), (0.05𝑒
𝑖2𝜋(0.1), 0.5𝑒𝑖2𝜋(0.6))) , ((𝔟4, 4), (0.75𝑒

𝑖2𝜋(0.88), 0.2𝑒𝑖2𝜋(0.1)))

((𝔟5, 0), (0.1𝑒
𝑖2𝜋(0.14), 0.4𝑒𝑖2𝜋(0.36))) , ((𝔟6, 2), (0.48𝑒

𝑖2𝜋(0.5), 0.3𝑒𝑖2𝜋(0.3)))}
 
 

 
 

 

𝜌(𝓋2) =

{
 
 

 
 ((𝔟1, 3), (0.6𝑒

𝑖2𝜋(0.7), 0.1𝑒𝑖2𝜋(0.15))) , ((𝔟2, 2), (0.37𝑒
𝑖2𝜋(0.45), 0.6𝑒𝑖2𝜋(0.3))) ,

((𝔟3, 1), (0.2𝑒
𝑖2𝜋(0.28), 0.7𝑒𝑖2𝜋(0.5))) , ((𝔟4, 3), (0.9𝑒

𝑖2𝜋(0.4), 0.09𝑒𝑖2𝜋(0.5)))

((𝔟5, 5), (0.9𝑒
𝑖2𝜋(0.92), 0.05 𝑒𝑖2𝜋(0.03))) , ((𝔟6, 1), (0.23𝑒

𝑖𝜋(0.33), 0.52𝑒𝑖2𝜋(0.63)))}
 
 

 
 

 

𝜌(𝓋3) =

{
 
 

 
 ((𝔟1, 1), (0.2𝑒

𝑖2𝜋(0.31), 0.7𝑒𝑖2𝜋(0.4))) , ((𝔟2, 2), (0.42𝑒
𝑖2𝜋(0.5), 0.4𝑒𝑖2𝜋(0.4))) ,

((𝔟3, 3), (0.8𝑒
𝑖2𝜋(0.6), 0.1𝑒𝑖2𝜋(0.3))) , ((𝔟4, 4), (0.95𝑒

𝑖2𝜋(0.8), 0.04𝑒𝑖2𝜋(0.15)))

((𝔟5, 0), (0.07𝑒
𝑖2𝜋(0.1), 0.9𝑒𝑖2𝜋(0.7))) , ((𝔟6, 3), (0.6𝑒

𝑖2𝜋(0.57), 0.25𝑒𝑖2𝜋(0.4)))}
 
 

 
 

 

𝜌(𝓋4) =

{
 
 

 
 ((𝔟1, 1), (0.18𝑒

𝑖2𝜋(0.29), 0.45𝑒𝑖2𝜋(0.65))) , ((𝔟2, 2), (0.38𝑒
𝑖2𝜋(0.48), 0.33𝑒𝑖2𝜋(0.23))) ,

((𝔟3, 4), (0.77𝑒
𝑖2𝜋(0.85), 0.17𝑒𝑖2𝜋(0.1))) , ((𝔟4, 5), (0.96𝑒

𝑖2𝜋(0.96), 0.03 𝑒𝑖2𝜋(0.03)))

((𝔟5, 2), (0.35𝑒
𝑖2𝜋(0.53), 0.61 𝑒𝑖2𝜋(0.27))) , ((𝔟6, 4), (0.82𝑒

𝑖2𝜋(79), 0.1𝑒𝑖2𝜋(0.15))) }
 
 

 
 

 

The tabular representation of CIF6-SS is given in table 

(3).  

 

 

Table 3. The tabular representation of CIF6-SS interpreted in example 1. 

(𝝆, (𝑱, 𝓥, 𝟔)) 𝓿𝟏 𝓿𝟐 𝓿𝟑 𝓿𝟒 

𝖇𝟏 
2, (

0.4𝑒𝑖2𝜋(0.45),

 0.2𝑒𝑖2𝜋(0.5)
) 3, (

0.6𝑒𝑖2𝜋(0.7),

0.1𝑒𝑖2𝜋(0.15)
) 1, (

0.2𝑒𝑖2𝜋(0.31),

 0.7𝑒𝑖2𝜋(0.4)
) 1, (

0.18𝑒𝑖2𝜋(0.29),

 0.45𝑒𝑖2𝜋(0.65)
) 

𝖇𝟐 
4, (

0.8𝑒𝑖2𝜋(0.75),

 0.1𝑒𝑖2𝜋(0.2)
) 2, (

0.37𝑒𝑖2𝜋(0.45),

 0. 6𝑒𝑖2𝜋(0.3)
) 2, (

0.42𝑒𝑖2𝜋(0.5),

 0. 4𝑒𝑖2𝜋(0.4)
) 2, (

0.38𝑒𝑖2𝜋(0.48),

 0. 33𝑒𝑖2𝜋(0.23)
) 

𝖇𝟑 
0, (

0.05𝑒𝑖2𝜋(0.1),

 0. 5𝑒𝑖2𝜋(0.6)
) 1, (

0.2𝑒𝑖2𝜋(0.28),

 0.7𝑒𝑖2𝜋(0.5)
) 3, (

0.8𝑒𝑖2𝜋(0.6),

 0.1𝑒𝑖2𝜋(0.3)
) 4, (

0.77𝑒𝑖2𝜋(0.85),

 0. 17𝑒𝑖2𝜋(0.1)
) 

𝖇𝟒 
4, (

0.75𝑒𝑖2𝜋(0.88),

 0. 2𝑒𝑖2𝜋(0.1)
) 3, (

0.9𝑒𝑖2𝜋(0.4),

 0.09𝑒𝑖2𝜋(0.5)
) 4, (

0.95𝑒𝑖2𝜋(0.8),

 0. 04𝑒𝑖2𝜋(0.15)
) 5, (

0.96𝑒𝑖2𝜋(0.96),

 0. 03𝑒𝑖2𝜋(0.03)
) 

𝖇𝟓 
0, (

0.1𝑒𝑖2𝜋(0.14),

 0.4𝑒𝑖2𝜋(0.36)
) 5, (

0.9𝑒𝑖2𝜋(0.92),

 0.05𝑒𝑖2𝜋(0.03)
) 0, (

0.07𝑒𝑖2𝜋(0.1),

 0. 9𝑒𝑖2𝜋(0.7)
) 2, (

0.35𝑒𝑖2𝜋(0.53),

 0. 61𝑒𝑖2𝜋(0.27)
) 

𝖇𝟔 
2, (

0.48𝑒𝑖2𝜋(0.5),

 0. 3𝑒𝑖2𝜋(0.3)
) 1, (

0.23𝑒𝑖2𝜋(0.33),

 0. 52𝑒𝑖2𝜋(0.63)
) 3, (

0.6𝑒𝑖2𝜋(0.57),

 0.25𝑒𝑖2𝜋(0.4)
) 4, (

0.82𝑒𝑖2𝜋(0.79),

 0. 1𝑒𝑖2𝜋(0.15)
) 

 

For better understanding, let assignment 

4, (
0.82𝑒𝑖2𝜋(0.79),

 0. 1𝑒𝑖2𝜋(0.15)
) in the bottom-right cell of table (3) 

shows that when 4 is the assessment grade w.r.t saving 

fuel, the bus 𝔟6 belongs to the parameterized sub-

universe with 0.82𝑒𝑖2𝜋(0.79) CMG and  0. 1𝑒𝑖2𝜋(0.15) 
NMG.  

 

 

 

 

Remark 1:  

• Any CIF2-SS (𝜌, (𝐽, 𝒱, 2)) can be linked with 

CIFSS. We associate CIF2-SS 𝜌: 𝒱 → 𝐶𝐼𝐽𝔅×{0,1}, 
with a CIFSS (𝐽′, 𝒱) where  

𝐽′(𝓿𝒌) =

{(𝖇, 𝜇𝑀(𝖇), 𝜇𝑁(𝖇))| ((𝖇, 1), (𝜇𝑀(𝖇), 𝜇𝑁(𝖇))) ∈

𝐽(𝓋𝑘)},  
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and 𝐶𝐼𝐽𝔅×{0,1} represent the collection of all CIF 

subsets over 𝔅× {0, 1}. 
• In def (21), grade 0 ∈ 𝔒 describes the lowest 

score, it doesn’t mean that the information is not 

complete or absence of assessment. 

• One can set any scale for membership values to 

select a grade. It is not mandatory to use the same 

scale which we established in example (1).   

• We can take any CIFN-SS as complex 

intuitionistic N+1-SS. Further, we can be 

considered CIFN-SS as CIF𝑁∗-SS with 𝑁∗ > 𝑁. 

For example, the CIF6-SS in example (1) can be 

considered as CIF7-SS over the same fuzzy 

parameterizations and parameters.  

Definition 22: A CIFN-SS (𝜌,ℋ) is said to be 

efficient if 𝜌(𝓋𝑘) = ((𝔟𝑗 , 𝑁 − 1), (
1. 0𝑒𝑖2𝜋(1.0),

0.0𝑒𝑖2𝜋(0.0)
)) for 

some 𝓋𝑘 ∈ 𝒱, 𝔟𝑗 ∈ 𝔅,  

Example 2: One can note that the CIF6-SS given in 

example (1) is not efficient. 

Definition 23: If (𝜌,ℋ) is an efficient CIFN-SS over 

𝔅, then the minimized efficient CIFV-SS of CIFN-SS 

on 𝔅 is designated by (𝜌𝑉 ,ℋ𝑉), where ℋ𝑉 =
(𝐽𝑉 , 𝒱, 𝑉) is given as 𝑉 = max

𝑗,𝑘
𝐽(𝓋𝑘)(𝔟𝑗) +

1 , 𝜇𝑀(𝔟𝑗), 𝜇
𝑁(𝔟𝑗) = (1. 0𝑒𝑖2𝜋(1.0), 0.0𝑒𝑖2𝜋(0.0)), 

𝐽𝑣(𝓋𝑘)(𝔟𝑗) = 𝐽(𝓋𝑘)(𝔟𝑗) for all 𝓋𝑘 ∈ 𝒱, 𝔟𝑗 ∈ 𝔅.  

Proposition 1: Every efficient CIFN-SS corresponds 

with minimized efficient CIFN-SS. 

Proof: Use definition (22) and definition (23).  

Now we give some algebraic properties linked with 

CIFN-SS. We do start with equality 

Definition 24: Let (𝜌1,ℋ1) and (𝜌2,ℋ2) be two 

CIFN-SSs over 𝔅. Then (𝜌1,ℋ1) and (𝜌2,ℋ2) are 

called equal iff 𝜌1 = 𝜌2 ((𝜇1
𝑀, 𝜇1

𝑁) = (𝜇2
𝑀, 𝜇2

𝑁)  ⇒

𝜇1
𝑀 = 𝜇2

𝑀, 𝜇1
𝑁 = 𝜇2

𝑁) and ℋ1 = ℋ2.  

We interpret the complement of CIFN-SS as below 

Definition 25: Let (𝜌,ℋ) be a CIFN-SS over 𝔅, where 

ℋ = (𝐽, 𝒱, 𝑁) is an N-SS. Then the CIF weak 

complement of the CIFN-SS  is designated by 

(𝜌𝑐 , (𝐽𝑐, 𝒱, 𝑁)), where (𝐽𝑐, 𝒱, 𝑁) is a weak 

complement,  i.e. 𝐽𝑐(𝓋𝑘) ∩ 𝐽(𝓋𝑘) = ∅, ∀𝓋𝑘 ∈ 𝒱, and 

𝜌𝑐 maps any parameter in 𝒱 with a CIFS ℬ on 𝐽𝑐(𝓋𝑘), 
i.e. 𝜌𝑐(𝓋𝑘) =

{(
(𝔟𝑗 , 𝔬𝓋𝑘),

 𝜇𝑁(𝔟𝑗 , 𝔬𝓋𝑘), 𝜇
𝑀(𝔟𝑗 , 𝔬𝓋𝑘)

) | ((𝔟𝑗 , 𝔬𝓋𝑘) ∈ 𝔅 × 𝔒)}.  

Example 3: A CIF weak complement of CIF6-SS in 

example (1) is presented in table (4).  

 

Table 4. The CIF weak complement of CIF6-SS 

interpreted in example 1. 
(𝝆𝒄, (𝑱𝒄, 𝓥, 𝟔)) 𝓿𝟏 𝓿𝟐 𝓿𝟑 𝓿𝟒 

𝖇𝟏 
1, (

0.2𝑒𝑖2𝜋(0.5),

 0.4𝑒𝑖2𝜋(0.45)
) 4, (

0.1𝑒𝑖2𝜋(0.15) 
0.6𝑒𝑖2𝜋(0.7),

) 5, (
0.7𝑒𝑖2𝜋(0.4),

 0.2𝑒𝑖2𝜋(0.31)
) 4, (

 0.45𝑒𝑖2𝜋(0.65),

0.18𝑒𝑖2𝜋(0.29)
) 

𝖇𝟐 
5, (

0.1𝑒𝑖2𝜋(0.2)

 0.8𝑒𝑖2𝜋(0.75) ,
) 0, (

 0. 6𝑒𝑖2𝜋(0.3),

0.37𝑒𝑖2𝜋(0.45)
) 5, (

0. 4𝑒𝑖2𝜋(0.4),

 0.42𝑒𝑖2𝜋(0.5)
) 2, (

0. 33𝑒𝑖2𝜋(0.23) ,

 0.38𝑒𝑖2𝜋(0.48)
) 

𝖇𝟑 
1, (

0. 5𝑒𝑖2𝜋(0.6),

 0.05𝑒𝑖2𝜋(0.1)
) 0, (

 0.7𝑒𝑖2𝜋(0.5),

0.2𝑒𝑖2𝜋(0.28)
) 5, (

0.1𝑒𝑖2𝜋(0.3),

 0.8𝑒𝑖2𝜋(0.6)
) 1, (

 0. 17𝑒𝑖2𝜋(0.1),

0.77𝑒𝑖2𝜋(0.85)
) 

𝖇𝟒 
5, (

0. 2𝑒𝑖2𝜋(0.1),

 0.75𝑒𝑖2𝜋(0.88)
) 4, (

 0.09𝑒𝑖2𝜋(0.5),

0.9𝑒𝑖2𝜋(0.4)
) 5, (

0. 04𝑒𝑖2𝜋(0.15) ,

 0.95𝑒𝑖2𝜋(0.8)
) 2, (

0. 03𝑒𝑖2𝜋(0.03) ,

 0.96𝑒𝑖2𝜋(0.96)
) 

𝖇𝟓 
1, (

0.4𝑒𝑖2𝜋(0.36),

 0.1𝑒𝑖2𝜋(0.14)
) 4, (

 0.05𝑒𝑖2𝜋(0.03),

0.9𝑒𝑖2𝜋(0.92)
) 5, (

0. 9𝑒𝑖2𝜋(0.7),

 0.07𝑒𝑖2𝜋(0.1)
) 1, (

 0. 61𝑒𝑖2𝜋(0.27) ,

0.35𝑒𝑖2𝜋(0.53)
) 

𝖇𝟔 
3, (

0. 3𝑒𝑖2𝜋(0.3),

 0.48𝑒𝑖2𝜋(0.5)
) 0, (

 0. 52𝑒𝑖2𝜋(0.63) ,

0.23𝑒𝑖2𝜋(0.33)
) 5, (

0.25𝑒𝑖2𝜋(0.4),

0.6𝑒𝑖2𝜋(0.57) 
) 5, (

0. 1𝑒𝑖2𝜋(0.15),

 0.82𝑒𝑖2𝜋(0.79)
) 

 

Definition 26: Let (𝜌, (𝐽, 𝒱, 𝑁)) be a CIFN-SS over 𝔅. 

Then the top CIF weak complement of (𝜌, (𝐽, 𝒱, 𝑁))  

is (𝜌𝑐, (𝐽𝕋, 𝒱, 𝑁)), where  

𝐽𝕋(𝓋𝑘)

=

{
 
 

 
 (

(𝔟𝑗 , 𝑁 − 1),

 (𝜇𝑁(𝔟𝑗 , 𝔬𝓋𝑘), 𝜇
𝑀(𝔟𝑗 , 𝔬𝓋𝑘))

)        𝑖𝑓 𝔬𝓋𝑘 < 𝑁 − 1

(
(𝔟𝑗 , 0),

 (𝜇𝑁(𝔟𝑗 , 𝔬𝓋𝑘), 𝜇
𝑀(𝔟𝑗 , 𝔬𝓋𝑘))

)                 𝑖𝑓 𝔬𝓋𝑘 = 𝑁 − 1

 

Example 4: The top CIF weak complement of the 

CIF6-SS in example (1) is presented in table (5).  

  

 

Table 5. The top CIF weak complement of the CIF6-SS interpreted in example 1. 

(𝝆𝒄, (𝑱𝒄, 𝓥, 𝟔)) 𝓿𝟏 𝓿𝟐 𝓿𝟑 𝓿𝟒 

𝖇𝟏 
5, (

0.2𝑒𝑖2𝜋(0.5),

 0.4𝑒𝑖2𝜋(0.45)
) 5, (

0.1𝑒𝑖2𝜋(0.15) 
0.6𝑒𝑖2𝜋(0.7),

) 5, (
0.7𝑒𝑖2𝜋(0.4),

 0.2𝑒𝑖2𝜋(0.31)
) 5, (

 0.45𝑒𝑖2𝜋(0.65),

0.18𝑒𝑖2𝜋(0.29)
) 

𝖇𝟐 
5, (

0.1𝑒𝑖2𝜋(0.2)

 0.8𝑒𝑖2𝜋(0.75),
) 5, (

 0. 6𝑒𝑖2𝜋(0.3),

0.37𝑒𝑖2𝜋(0.45)
) 5, (

0. 4𝑒𝑖2𝜋(0.4),

 0.42𝑒𝑖2𝜋(0.5)
) 5, (

0. 33𝑒𝑖2𝜋(0.23),

 0.38𝑒𝑖2𝜋(0.48)
) 

𝖇𝟑 
5, (

0. 5𝑒𝑖2𝜋(0.6),

 0.05𝑒𝑖2𝜋(0.1)
) 5, (

 0.7𝑒𝑖2𝜋(0.5),

0.2𝑒𝑖2𝜋(0.28)
) 5, (

0.1𝑒𝑖2𝜋(0.3),

 0.8𝑒𝑖2𝜋(0.6)
) 5, (

 0. 17𝑒𝑖2𝜋(0.1),

0.77𝑒𝑖2𝜋(0.85)
) 

𝖇𝟒 
5, (

0. 2𝑒𝑖2𝜋(0.1),

 0.75𝑒𝑖2𝜋(0.88)
) 5, (

 0.09𝑒𝑖2𝜋(0.5),

0.9𝑒𝑖2𝜋(0.4)
) 5, (

0. 04𝑒𝑖2𝜋(0.15),

 0.95𝑒𝑖2𝜋(0.8)
) 0, (

0. 03𝑒𝑖2𝜋(0.03),

 0.96𝑒𝑖2𝜋(0.96)
) 

𝖇𝟓 
5, (

0.4𝑒𝑖2𝜋(0.36),

 0.1𝑒𝑖2𝜋(0.14)
) 0, (

 0.05𝑒𝑖2𝜋(0.03),

0.9𝑒𝑖2𝜋(0.92)
) 5, (

0. 9𝑒𝑖2𝜋(0.7),

 0.07𝑒𝑖2𝜋(0.1)
) 5, (

 0. 61𝑒𝑖2𝜋(0.27),

0.35𝑒𝑖2𝜋(0.53)
) 

𝖇𝟔 
5, (

0. 3𝑒𝑖2𝜋(0.3),

 0.48𝑒𝑖2𝜋(0.5)
) 5, (

 0. 52𝑒𝑖2𝜋(0.63),

0.23𝑒𝑖2𝜋(0.33)
) 5, (

0.25𝑒𝑖2𝜋(0.4),

0.6𝑒𝑖2𝜋(0.57) 
) 5, (

0. 1𝑒𝑖2𝜋(0.15),

 0.82𝑒𝑖2𝜋(0.79)
) 
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Definition 27: Let (𝜌, (𝐽, 𝒱, 𝑁)) be a CIFN-SS over 𝔅. 

Then the bottom CIF weak complement of 

(𝜌, (𝐽, 𝒱, 𝑁))  is (𝜌𝑐 , (𝐽𝔹, 𝒱, 𝑁)), where  

𝐽𝔹(𝓋𝑘)

=

{
 
 

 
 (

(𝔟𝑗 , 0),

(𝜇𝑁(𝔟𝑗 , 𝔬𝓋𝑘), 𝜇
𝑀(𝔟𝑗 , 𝔬𝓋𝑘))

)                𝑖𝑓 𝔬𝓋𝑘 > 0

(
(𝔟𝑗 , 𝑁 − 1),

 (𝜇𝑁(𝔟𝑗 , 𝔬𝓋𝑘), 𝜇
𝑀(𝔟𝑗 , 𝔬𝓋𝑘))

)             𝑖𝑓 𝔬𝓋𝑘 = 0

 

 

Example 5: The bottom CIF weak complement of the 

CIF6-SS in example (1) is presented in table (6).  

 

 

Table 6. The bottom CIF weak complement of the CIF6-SS interpreted in example 1. 

(𝝆𝒄, (𝑱𝒄, 𝓥, 𝟔)) 𝓿𝟏 𝓿𝟐 𝓿𝟑 𝓿𝟒 

𝖇𝟏 
0, (

0.2𝑒𝑖2𝜋(0.5),

 0.4𝑒𝑖2𝜋(0.45)
) 0, (

0.1𝑒𝑖2𝜋(0.15) 
0.6𝑒𝑖2𝜋(0.7),

) 0, (
0.7𝑒𝑖2𝜋(0.4),

 0.2𝑒𝑖2𝜋(0.31)
) 0, (

 0.45𝑒𝑖2𝜋(0.65),

0.18𝑒𝑖2𝜋(0.29)
) 

𝖇𝟐 
0, (

0.1𝑒𝑖2𝜋(0.2)

 0.8𝑒𝑖2𝜋(0.75),
) 0, (

 0. 6𝑒𝑖2𝜋(0.3),

0.37𝑒𝑖2𝜋(0.45)
) 0, (

0. 4𝑒𝑖2𝜋(0.4),

 0.42𝑒𝑖2𝜋(0.5)
) 0, (

0. 33𝑒𝑖2𝜋(0.23),

 0.38𝑒𝑖2𝜋(0.48)
) 

𝖇𝟑 
5, (

0. 5𝑒𝑖2𝜋(0.6),

 0.05𝑒𝑖2𝜋(0.1)
) 0, (

 0.7𝑒𝑖2𝜋(0.5),

0.2𝑒𝑖2𝜋(0.28)
) 0, (

0.1𝑒𝑖2𝜋(0.3),

 0.8𝑒𝑖2𝜋(0.6)
) 0, (

 0. 17𝑒𝑖2𝜋(0.1),

0.77𝑒𝑖2𝜋(0.85)
) 

𝖇𝟒 
0, (

0. 2𝑒𝑖2𝜋(0.1),

 0.75𝑒𝑖2𝜋(0.88)
) 0, (

 0.09𝑒𝑖2𝜋(0.5),

0.9𝑒𝑖2𝜋(0.4)
) 0, (

0. 04𝑒𝑖2𝜋(0.15),

 0.95𝑒𝑖2𝜋(0.8)
) 0, (

0. 03𝑒𝑖2𝜋(0.03),

 0.96𝑒𝑖2𝜋(0.96)
) 

𝖇𝟓 
5, (

0.4𝑒𝑖2𝜋(0.36),

 0.1𝑒𝑖2𝜋(0.14)
) 0, (

 0.05𝑒𝑖2𝜋(0.03),

0.9𝑒𝑖2𝜋(0.92)
) 5, (

0. 9𝑒𝑖2𝜋(0.7),

 0.07𝑒𝑖2𝜋(0.1)
) 0, (

 0. 61𝑒𝑖2𝜋(0.27),

0.35𝑒𝑖2𝜋(0.53)
) 

𝖇𝟔 
0, (

0. 3𝑒𝑖2𝜋(0.3),

 0.48𝑒𝑖2𝜋(0.5)
) 0, (

 0. 52𝑒𝑖2𝜋(0.63),

0.23𝑒𝑖2𝜋(0.33)
) 0, (

0.25𝑒𝑖2𝜋(0.4),

0.6𝑒𝑖2𝜋(0.57) 
) 0, (

0. 1𝑒𝑖2𝜋(0.15),

 0.82𝑒𝑖2𝜋(0.79)
) 

Next, we interpret the concept of union and 

intersection of CIFN-SS.  

Definition 28: Let (𝜌1,ℋ1) and (𝜌2,ℋ2) be two 

CIFN-SSs over 𝔅, where ℋ1 = (𝐽1, 𝒱1, 𝑁1) and ℋ2 =
(𝐽2, 𝒱2, 𝑁2) are N-SSs over 𝔅. Then their restricted 

intersection is designated and defined as 
(𝜌1,ℋ1) ∩ℛ (𝜌2,ℋ2) = (𝜓,ℋ1 ∩ℛ ℋ2), where 

ℋ1 ∩ℛ ℋ2 = (𝑆, 𝒱1 ∩ 𝒱2, min(𝑁1, 𝑁2)) ∀ 𝓋𝑘 ∈ 𝒱1 ∩

𝒱2  and 𝔟𝑗 ∈ 𝔅, ((𝔟𝑗 , 𝔬𝑞𝑘) , 𝓍, 𝓎) ∈ 𝜓
(𝓋𝑘)  ⟺ 𝔬𝓋𝑘 =

min(𝔬𝓋𝑘
1 , 𝔬𝓋𝑘

2 ) and 𝓍 =

min (𝜇1
𝑀 (𝔟𝑗 , 𝔬𝑞

1
𝑘
) , 𝜇2

𝑀 (𝔟𝑗 , 𝔬𝑞
2
𝑘
) ) =

(min(𝛾1
𝑀, 𝛾2

𝑀 ) 𝑒
𝑖2𝜋(min(𝜔

𝛾1
𝑀,
𝜔
𝛾2
𝑀))

)  𝓎 =

max (𝜇1
𝑁 (𝔟𝑗 , 𝔬𝑞

1
𝑘
) , 𝜇2

𝑁 (𝔟𝑗 , 𝔬𝑞
2
𝑘
) ) =

(max(𝛾1
𝑁, 𝛾2

𝑁 ) 𝑒
𝑖2𝜋(max(𝜔

𝛾1
𝑁,
𝜔
𝛾2
𝑁))
) if 

((𝔟𝑗 , 𝔬𝑞
1
𝑘
) , 𝜇1

𝑀 (𝔟𝑗 , 𝔬𝑞
1
𝑘
) , 𝜇1

𝑁 (𝔟𝑗 , 𝔬𝑞
1
𝑘
)) ∈ 𝜌1(𝓋𝑘) and 

((𝔟𝑗 , 𝔬𝑞
2
𝑘
) , 𝜇2

𝑀 (𝔟𝑗 , 𝔬𝑞
2
𝑘
) , 𝜇2

𝑁 (𝔟𝑗 , 𝔬𝑞
2
𝑘
)) ∈ 𝜌2(𝓋𝑘).  

Example 6: Let(𝜌1,ℋ1) be CIF4-SS and (𝜌2,ℋ2) be 

CIF5-SS presented in tables (7) and (8). Then their 

restricted intersection (𝜌1,ℋ1) ∩ℛ (𝜌2,ℋ2) is 

presented in table (9).  

 

   

 

Table 7. The tabular form of CIF4-SS considered in example 6. 

(𝝆𝟏, (𝑱𝟏, 𝓥𝟏, 𝟒)) 𝓿𝟏 𝓿𝟐 𝓿𝟑 

𝖇𝟏 
0, (

0.05𝑒𝑖2𝜋(0.1),

 0. 5𝑒𝑖2𝜋(0.6)
) 1, (

0.3𝑒𝑖2𝜋(0.38),

 0.6𝑒𝑖2𝜋(0.5)
) 1, (

0.35𝑒𝑖2𝜋(0.41),

 0.5𝑒𝑖2𝜋(0.4)
) 

𝖇𝟐 
3, (

0.85𝑒𝑖2𝜋(0.85),

 0.1𝑒𝑖2𝜋(0.12)
) 2, (

0.67𝑒𝑖2𝜋(0.65),

 0. 2𝑒𝑖2𝜋(0.3)
) 2, (

0.62𝑒𝑖2𝜋(0.6),

 0. 3𝑒𝑖2𝜋(0.25)
) 

𝖇𝟑 
2, (

0.7𝑒𝑖2𝜋(0.75),

 0.2𝑒𝑖2𝜋(0.15)
) 3, (

0.8𝑒𝑖2𝜋(0.9),

0.1𝑒𝑖2𝜋(0.05)
) 3, (

0.87𝑒𝑖2𝜋(0.9),

 0.1𝑒𝑖2𝜋(0.05)
) 
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Table 8. The tabular form of CIF5-SS considered in example 6. 

(𝝆𝟐, (𝑱𝟐, 𝓥𝟐, 𝟓)) 𝓿𝟏 𝓿𝟑 𝓿𝟒 

𝖇𝟏 
4, (

0.85𝑒𝑖2𝜋(0.88),

 0. 1𝑒𝑖2𝜋(0.1)
) 4, (

0.95𝑒𝑖2𝜋(0.8),

 0. 04𝑒𝑖2𝜋(0.15)
) 4, (

0.96𝑒𝑖2𝜋(0.96),

 0. 03𝑒𝑖2𝜋(0.03)
) 

𝖇𝟐 
0, (

0.15𝑒𝑖2𝜋(0.14),

 0.4𝑒𝑖2𝜋(0.36)
) 1, (

0.35𝑒𝑖2𝜋(0.25),

 0. 5𝑒𝑖2𝜋(0.3)
) 3, (

0.7𝑒𝑖2𝜋(0.73),

 0. 1𝑒𝑖2𝜋(0.2)
) 

𝖇𝟑 
3, (

0.68𝑒𝑖2𝜋(0.6),

 0. 3𝑒𝑖2𝜋(0.3)
) 2, (

0.55𝑒𝑖2𝜋(0.57),

 0.25𝑒𝑖2𝜋(0.1)
) 1, (

0.3𝑒𝑖2𝜋(0.29),

 0. 1𝑒𝑖2𝜋(0.15)
) 

       

Table 9. The restricted intersection of CIF4-SS and CIF5-SS considered in example 6. 

(𝝍, (𝑺, 𝓥𝟏 ∩𝓡 𝓥𝟐, 𝟒)) 𝓿𝟏 𝓿𝟑 

𝖇𝟏 
0, (

0.05𝑒𝑖2𝜋(0.1),

 0. 5𝑒𝑖2𝜋(0.6)
) 1, (

0.35𝑒𝑖2𝜋(0.41),

 0.5𝑒𝑖2𝜋(0.4)
) 

𝖇𝟐 
0, (

0.15𝑒𝑖2𝜋(0.14),

 0.4𝑒𝑖2𝜋(0.36)
) 1, (

0.35𝑒𝑖2𝜋(0.25),

 0. 5𝑒𝑖2𝜋(0.3)
) 

𝖇𝟑 
2, (

0.68𝑒𝑖2𝜋(0.6),

 0.3𝑒𝑖2𝜋(0.3)
) 2, (

0.55𝑒𝑖2𝜋(0.57),

 0.25𝑒𝑖2𝜋(0.1)
) 

 

Definition 29: Let (𝜌1,ℋ1) and (𝜌2,ℋ2) be two 

CFIN-SSs over 𝔅, where ℋ1 = (𝐽1, 𝒱1, 𝑁1) and ℋ2 =
(𝐽2, 𝒱2, 𝑁2) are N-SSs over 𝔅. Then their extended  

 

 

intersection is designated and given as 
(𝜌1,ℋ1) ∩ℰ (𝜌2,ℋ2) = (𝜉,ℋ1 ∩ℰ ℋ2), where 

ℋ1 ∩ℰ ℋ2 = (𝐺, 𝒱1 ∩ 𝒱2, max(𝑁1, 𝑁2)) ∀ 𝓋𝑘 ∈ 𝒱1 ∩
𝒱2  and 𝔟𝑗 ∈ 𝔅, and 𝜉(𝓋𝑘) is presented by  

𝜉(𝓋𝑘) =

{
 
 
 
 
 
 

 
 
 
 
 
 
𝜌1(𝓋𝑘)                              𝑖𝑓 𝓋𝑘 ∈ 𝒱1 − 𝒱2                                                                                                                    

𝜌2(𝓋𝑘)                              𝑖𝑓 𝓋𝑘 ∈ 𝒱2 − 𝒱1                                                                                                                    

((𝔟𝑗 , 𝔬𝑞𝑘) , 𝓍, 𝓎)        

(

 
 
 
 
 
 
 
 

 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝔬𝓋𝑘 = min(𝔬𝓋𝑘
1 , 𝔬𝓋𝑘

2 )  𝑎𝑛𝑑 𝓍 = min (𝜇1
𝑀 (𝔟𝑗 , 𝔬𝑞

1
𝑘
) , 𝜇2

𝑀 (𝔟𝑗 , 𝔬𝑞
2
𝑘
) )

= (min(𝛾1
𝑀, 𝛾2

𝑀 ) 𝑒
𝑖2𝜋(min(𝜔

𝛾1
𝑀,
𝜔
𝛾2
𝑀))

) , 𝓎 = max (𝜇1
𝑁 (𝔟𝑗 , 𝔬𝑞

1
𝑘
) , 𝜇2

𝑁 (𝔟𝑗 , 𝔬𝑞
2
𝑘
) )

= (max(𝛾1
𝑁 , 𝛾2

𝑁 ) 𝑒
𝑖2𝜋(max(𝜔

𝛾1
𝑁,
𝜔
𝛾2
𝑁))
) ,𝑤ℎ𝑒𝑟𝑒 

((𝔟𝑗 , 𝔬𝑞
1
𝑘
) , 𝜇1

𝑀 (𝔟𝑗 , 𝔬𝑞
1
𝑘
) , 𝜇1

𝑁 (𝔟𝑗 , 𝔬𝑞
1
𝑘
)) ∈ 𝜌1(𝓋𝑘) 𝑎𝑛𝑑

((𝔟𝑗 , 𝔬𝑞
2
𝑘
) , 𝜇2

𝑀 (𝔟𝑗 , 𝔬𝑞
2
𝑘
) , 𝜇2

𝑁 (𝔟𝑗 , 𝔬𝑞
2
𝑘
)) ∈ 𝜌2(𝓋𝑘) )

 
 
 
 
 
 
 
 

 

Example 7: Let(𝜌1,ℋ1) be CIF4-SS shown in table (7) 

and (𝜌2,ℋ2) be CIF5-SS shown in table (8). Then 

their extended intersection (𝜌1,ℋ1) ∩ℰ (𝜌2,ℋ2) is 

shown in table (10).  

 

 

Table 10. The extended intersection of CIF4-SS displayed in table 7 and CIF5-SS displayed in table 8. 

(𝝃, (𝑮, 𝓥𝟏 ∩𝓡 𝓥𝟐, 𝟓)) 𝓿𝟏 𝓿𝟐 𝓿𝟑 𝓿𝟒 

𝖇𝟏 
0, (

0.05𝑒𝑖2𝜋(0.1),

 0. 5𝑒𝑖2𝜋(0.6)
) 1, (

0.3𝑒𝑖2𝜋(0.38),

 0.6𝑒𝑖2𝜋(0.5)
) 1, (

0.35𝑒𝑖2𝜋(0.41),

 0.5𝑒𝑖2𝜋(0.4)
) 4, (

0.96𝑒𝑖2𝜋(0.96),

 0. 03𝑒𝑖2𝜋(0.03)
) 

𝖇𝟐 
0, (

0.15𝑒𝑖2𝜋(0.14),

 0.4𝑒𝑖2𝜋(0.36)
) 2, (

0.67𝑒𝑖2𝜋(0.65),

 0. 2𝑒𝑖2𝜋(0.3)
) 1, (

0.35𝑒𝑖2𝜋(0.25),

 0. 5𝑒𝑖2𝜋(0.3)
) 3, (

0.7𝑒𝑖2𝜋(0.73),

 0. 1𝑒𝑖2𝜋(0.2)
) 

𝖇𝟑 
2, (

0.68𝑒𝑖2𝜋(0.6),

 0.3𝑒𝑖2𝜋(0.3)
) 3, (

0.8𝑒𝑖2𝜋(0.9),

0.1𝑒𝑖2𝜋(0.05)
) 2, (

0.55𝑒𝑖2𝜋(0.57),

 0.25𝑒𝑖2𝜋(0.1)
) 1, (

0.3𝑒𝑖2𝜋(0.29),

 0. 1𝑒𝑖2𝜋(0.15)
) 

 

Definition 30: Let (𝜌1,ℋ1) and (𝜌2,ℋ2) be two 

CIFN-SSs over 𝔅, where ℋ1 = (𝐽1, 𝒱1, 𝑁1) and ℋ2 =
(𝐽2, 𝒱2, 𝑁2) are N-SSs over 𝔅.  

 

Then their restricted union is designated and given as 
(𝜌1,ℋ1) ∪ℛ (𝜌2,ℋ2) = (𝜎,ℋ1𝑐𝑢𝑝 ℛℋ2), where 

ℋ1 ∪ℛ ℋ2 = (𝑌, 𝒱1 ∩ 𝒱2, max(𝑁1, 𝑁2)) ∀ 𝓋𝑘 ∈ 𝒱1 ∩
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𝒱2  and 𝔟𝑗 ∈ 𝔅, ((𝔟𝑗 , 𝔬𝑞𝑘) , 𝓍, 𝓎) ∈ 𝜓
(𝓋𝑘)  ⟺ 𝔬𝓋𝑘 =

max(𝔬𝓋𝑘
1 , 𝔬𝓋𝑘

2 ) and 𝓍 =

max (𝜇1
𝑀 (𝔟𝑗 , 𝔬𝑞

1
𝑘
) , 𝜇2

𝑀 (𝔟𝑗 , 𝔬𝑞
2
𝑘
) ) =

(max(𝛾1
𝑀, 𝛾2

𝑀 ) 𝑒
𝑖2𝜋(max(𝜔

𝛾1
𝑀,
𝜔
𝛾2
𝑀))

)  𝓎 =

min (𝜇1
𝑁 (𝔟𝑗 , 𝔬𝑞

1
𝑘
) , 𝜇2

𝑁 (𝔟𝑗 , 𝔬𝑞
2
𝑘
) ) =

(min(𝛾1
𝑁 , 𝛾2

𝑁 ) 𝑒
𝑖2𝜋(min(𝜔

𝛾1
𝑁,
𝜔
𝛾2
𝑁))
) if 

((𝔟𝑗 , 𝔬𝑞
1
𝑘
) , 𝜇1

𝑀 (𝔟𝑗 , 𝔬𝑞
1
𝑘
) , 𝜇1

𝑁 (𝔟𝑗 , 𝔬𝑞
1
𝑘
)) ∈ 𝜌1(𝓋𝑘) and 

((𝔟𝑗 , 𝔬𝑞
2
𝑘
) , 𝜇2

𝑀 (𝔟𝑗 , 𝔬𝑞
2
𝑘
) , 𝜇2

𝑁 (𝔟𝑗 , 𝔬𝑞
2
𝑘
)) ∈ 𝜌2(𝓋𝑘).  

Example 8: Let(𝜌1,ℋ1) be CIF4-SS and (𝜌2,ℋ2) be 

CIF5-SS presented in tables (7) and (8). Then their 

restricted union (𝜌1,ℋ1) ∪ℛ (𝜌2,ℋ2) is presented in 

table (11).  

    

   

Table 10. The restricted union of CIF4-SS displaed in table 7 and CIF5-SS displayed in table 8. 

(𝝈, (𝑺, 𝓥𝟏 ∪𝓡 𝓥𝟐, 𝟓)) 𝓿𝟏 𝓿𝟑 

𝖇𝟏 
4, (

0.85𝑒𝑖2𝜋(0.88),

 0. 1𝑒𝑖2𝜋(0.1)
) 4, (

0.95𝑒𝑖2𝜋(0.8),

 0. 04𝑒𝑖2𝜋(0.15)
) 

𝖇𝟐 
3, (

0.85𝑒𝑖2𝜋(0.85),

 0.1𝑒𝑖2𝜋(0.12)
) 2, (

0.62𝑒𝑖2𝜋(0.6),

 0. 3𝑒𝑖2𝜋(0.25)
) 

𝖇𝟑 
3, (

0.7𝑒𝑖2𝜋(0.75),

 0. 2𝑒𝑖2𝜋(0.15)
) 3, (

0.87𝑒𝑖2𝜋(0.9),

 0.1𝑒𝑖2𝜋(0.05)
) 

Definition 31: Let (𝜌1,ℋ1) and (𝜌2,ℋ2) be two 

CFIN-SSs over 𝔅, where ℋ1 = (𝐽1, 𝒱1, 𝑁1) and ℋ2 =
(𝐽2, 𝒱2, 𝑁2) are N-SSs over 𝔅. Then their extended 

union is designated and given as  

(𝜌1,ℋ1) ∪ℰ (𝜌2,ℋ2) = (𝜏,ℋ1 ∪ℰ ℋ2), where 

ℋ1 ∪ℰ ℋ2 = (𝐿, 𝒱1 ∩ 𝒱2, max(𝑁1, 𝑁2)) ∀ 𝓋𝑘 ∈ 𝒱1 ∩
𝒱2  and 𝔟𝑗 ∈ 𝔅, and 𝜏(𝓋𝑘) is presented by  

𝜏(𝓋𝑘) =

{
 
 
 
 
 
 

 
 
 
 
 
 
𝜌1(𝓋𝑘)                              𝑖𝑓 𝓋𝑘 ∈ 𝒱1 − 𝒱2                                                                                                                    

𝜌2(𝓋𝑘)                              𝑖𝑓 𝓋𝑘 ∈ 𝒱2 − 𝒱1                                                                                                                    

((𝔟𝑗, 𝔬𝑞𝑘) , 𝓍, 𝓎)        

(

 
 
 
 
 
 
 
 

 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝔬𝓋𝑘 = max(𝔬𝓋𝑘
1 , 𝔬𝓋𝑘

2 )  𝑎𝑛𝑑 𝓍 = max (𝜇1
𝑀 (𝔟𝑗 , 𝔬𝑞

1
𝑘
) , 𝜇2

𝑀 (𝔟𝑗 , 𝔬𝑞
2
𝑘
) )

= (max(𝛾1
𝑀, 𝛾2

𝑀 ) 𝑒
𝑖2𝜋(max(𝜔

𝛾1
𝑀,
𝜔
𝛾2
𝑀))

) , 𝓎 = min (𝜇1
𝑁 (𝔟𝑗 , 𝔬𝑞

1
𝑘
) , 𝜇2

𝑁 (𝔟𝑗 , 𝔬𝑞
2
𝑘
) )

= (min(𝛾1
𝑁 , 𝛾2

𝑁 ) 𝑒
𝑖2𝜋(min(𝜔

𝛾1
𝑁,
𝜔
𝛾2
𝑁))
) ,𝑤ℎ𝑒𝑟𝑒 

((𝔟𝑗 , 𝔬𝑞
1
𝑘
) , 𝜇1

𝑀 (𝔟𝑗 , 𝔬𝑞
1
𝑘
) , 𝜇1

𝑁 (𝔟𝑗 , 𝔬𝑞
1
𝑘
)) ∈ 𝜌1(𝓋𝑘) 𝑎𝑛𝑑

((𝔟𝑗 , 𝔬𝑞
2
𝑘
) , 𝜇2

𝑀 (𝔟𝑗 , 𝔬𝑞
2
𝑘
) , 𝜇2

𝑁 (𝔟𝑗 , 𝔬𝑞
2
𝑘
)) ∈ 𝜌2(𝓋𝑘) )

 
 
 
 
 
 
 
 

 

Example 9: Let(𝜌1,ℋ1) be CIF4-SS shown in table (7) 

and (𝜌2,ℋ2) be CIF5-SS shown in table (8). Then 

their extended union (𝜌1,ℋ1) ∪ℰ (𝜌2,ℋ2) is shown in 

table (12).  

 

Table 11. The extended union of CIF4-SS displayed in table 7 and CIF5-SS displayed in table 8. 

(𝝉, (𝑺, 𝓥𝟏 ∪𝓔 𝓥𝟐, 𝟓)) 𝓿𝟏 𝓿𝟐 𝓿𝟑 𝓿𝟒 

𝖇𝟏 
4, (

0.85𝑒𝑖2𝜋(0.88),

 0. 1𝑒𝑖2𝜋(0.1)
) 1, (

0.3𝑒𝑖2𝜋(0.38),

 0.6𝑒𝑖2𝜋(0.5)
) 4, (

0.95𝑒𝑖2𝜋(0.8),

 0. 04𝑒𝑖2𝜋(0.15)
) 4, (

0.96𝑒𝑖2𝜋(0.96),

 0. 03𝑒𝑖2𝜋(0.03)
) 

𝖇𝟐 
3, (

0.85𝑒𝑖2𝜋(0.85),

 0.1𝑒𝑖2𝜋(0.12)
) 2, (

0.67𝑒𝑖2𝜋(0.65),

 0. 2𝑒𝑖2𝜋(0.3)
) 2, (

0.62𝑒𝑖2𝜋(0.6),

 0. 3𝑒𝑖2𝜋(0.25)
) 3, (

0.7𝑒𝑖2𝜋(0.73),

 0. 1𝑒𝑖2𝜋(0.2)
) 

𝖇𝟑 
3, (

0.7𝑒𝑖2𝜋(0.75),

 0. 2𝑒𝑖2𝜋(0.15)
) 3, (

0.8𝑒𝑖2𝜋(0.9),

0.1𝑒𝑖2𝜋(0.05)
) 3, (

0.87𝑒𝑖2𝜋(0.9),

 0.1𝑒𝑖2𝜋(0.05)
) 1, (

0.3𝑒𝑖2𝜋(0.29),

 0. 1𝑒𝑖2𝜋(0.15)
) 

 

Now we can relate CIFSSs with CIFN-SSs in different 

forms;  

Definition 32: Let (𝜌,ℋ) be a CIFN-SS over 𝔅, where 

ℋ = (𝐽, 𝒱, 𝑁) is an N-SS. Let 0 < 𝛽 < 𝑁  

 

be a threshold. The CIFSS over 𝔅 linked with (𝜌 ,ℋ) 

and 𝛽 is (𝜌𝛽 , 𝒱) given by: for each 𝓋 ∈ 𝒱,  
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𝜌𝛽(𝓋𝑘)

= {
(𝔟𝑗 , (1.0𝑒

𝑖2𝜋(1.0), 0.0𝑒𝑖2𝜋(0.0)))                    𝑖𝑓 𝔬𝓋𝑘 ≥ 𝛽                                        

 (𝔟𝑗 , (0.0𝑒
𝑖2𝜋(0.0), 1.0𝑒𝑖2𝜋(1.0)))                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                         

 

Particularly, 𝜌1(𝓋𝑘) be the bottom CIFSS linked with 

(𝜌 ,ℋ) and 𝜌𝑁−1(𝓋𝑘) be the top CIFSS linked with 
(𝜌 ,ℋ).  
Remark 2:  

• if we let the phase term 𝜔 = 0 then from 

definition (32) we get intuitionistic fuzzy-SS.  

• If we let the NMG is equal to zero then from 

definition (32) we get complex fuzzy-SS.  

• if we let the phase term 𝜔 = 0 and NMG is equal 

to zero then from definition (32) we get SS. 

Example 10: Let CIF6-SS presented in example (1) 

and 0 < 𝛽 < 6 be the threshold. Then the possible 

CIFSSs linked with thresholds 1, 2, 3, 4, and 5 are 

given from tables (13) to (17).  

 

 

Table 12. The possible CIFSS linked with (ρ,ℋ) with threshold 1.

(𝝆𝟏, 𝓥) 𝓿𝟏 𝓿𝟐 𝓿𝟑 𝓿𝟒 

𝖇𝟏 
(
1.0𝑒𝑖2𝜋(1.0),

 0.0𝑒𝑖2𝜋(0.0)
) (

1.0𝑒𝑖2𝜋(1.0),

 0.0𝑒𝑖2𝜋(0.0)
)  (

1.0𝑒𝑖2𝜋(1.0),

 0.0𝑒𝑖2𝜋(0.0)
) (

1.0𝑒𝑖2𝜋(1.0),

 0.0𝑒𝑖2𝜋(0.0)
) 

𝖇𝟐 
(
1.0𝑒𝑖2𝜋(1.0),

 0.0𝑒𝑖2𝜋(0.0)
)  (

1.0𝑒𝑖2𝜋(1.0),

 0.0𝑒𝑖2𝜋(0.0)
) (

1.0𝑒𝑖2𝜋(1.0),

 0.0𝑒𝑖2𝜋(0.0)
)  (

1.0𝑒𝑖2𝜋(1.0),

 0.0𝑒𝑖2𝜋(0.0)
) 

𝖇𝟑 
(
0.0𝑒𝑖2𝜋(0.0),

 1. 0𝑒𝑖2𝜋(1.0)
) (

1.0𝑒𝑖2𝜋(1.0),

 0.0𝑒𝑖2𝜋(0.0)
)  (

1.0𝑒𝑖2𝜋(1.0),

 0.0𝑒𝑖2𝜋(0.0)
)  (

1.0𝑒𝑖2𝜋(1.0),

 0.0𝑒𝑖2𝜋(0.0)
) 

𝖇𝟒 
(
1.0𝑒𝑖2𝜋(1.0),

 0.0𝑒𝑖2𝜋(0.0)
)  (

1.0𝑒𝑖2𝜋(1.0),

 0.0𝑒𝑖2𝜋(0.0)
)  (

1.0𝑒𝑖2𝜋(1.0),

 0.0𝑒𝑖2𝜋(0.0)
)  (

1.0𝑒𝑖2𝜋(1.0),

 0.0𝑒𝑖2𝜋(0.0)
) 

𝖇𝟓 
(
0.0𝑒𝑖2𝜋(0.0),

 1. 0𝑒𝑖2𝜋(1.0)
)  (

1.0𝑒𝑖2𝜋(1.0),

 0.0𝑒𝑖2𝜋(0.0)
)  (

0.0𝑒𝑖2𝜋(0.0),

 1. 0𝑒𝑖2𝜋(1.0)
)  (

1.0𝑒𝑖2𝜋(1.0),

 0.0𝑒𝑖2𝜋(0.0)
) 

𝖇𝟔 
 (
1.0𝑒𝑖2𝜋(1.0),

 0.0𝑒𝑖2𝜋(0.0)
)  (

1.0𝑒𝑖2𝜋(1.0),

 0.0𝑒𝑖2𝜋(0.0)
) (

1.0𝑒𝑖2𝜋(1.0),

 0.0𝑒𝑖2𝜋(0.0)
) (

1.0𝑒𝑖2𝜋(1.0),

 0.0𝑒𝑖2𝜋(0.0)
) 

  

Table 13. The possible CIFSS linked with (ρ,ℋ) with threshold 2. 

(𝝆𝟐, 𝓥) 𝓿𝟏 𝓿𝟐 𝓿𝟑 𝓿𝟒 

𝖇𝟏 
 (
1.0𝑒𝑖2𝜋(1.0),

 0.0𝑒𝑖2𝜋(0.0)
) (

1.0𝑒𝑖2𝜋(1.0),

 0.0𝑒𝑖2𝜋(0.0)
)  (

0.0𝑒𝑖2𝜋(0.0),

 1. 0𝑒𝑖2𝜋(1.0)
)  (

0.0𝑒𝑖2𝜋(0.0),

 1. 0𝑒𝑖2𝜋(1.0)
) 

𝖇𝟐 
(
1.0𝑒𝑖2𝜋(1.0),

 0.0𝑒𝑖2𝜋(0.0)
) (

1.0𝑒𝑖2𝜋(1.0),

 0.0𝑒𝑖2𝜋(0.0)
) (

1.0𝑒𝑖2𝜋(1.0),

 0.0𝑒𝑖2𝜋(0.0)
) (

1.0𝑒𝑖2𝜋(1.0),

 0.0𝑒𝑖2𝜋(0.0)
) 

𝖇𝟑 
 (
0.0𝑒𝑖2𝜋(0.0),

 1. 0𝑒𝑖2𝜋(1.0)
)  (

0.0𝑒𝑖2𝜋(0.0),

 1. 0𝑒𝑖2𝜋(1.0)
) (

1.0𝑒𝑖2𝜋(1.0),

 0.0𝑒𝑖2𝜋(0.0)
)  (

1.0𝑒𝑖2𝜋(1.0),

 0.0𝑒𝑖2𝜋(0.0)
) 

𝖇𝟒 
(
1.0𝑒𝑖2𝜋(1.0),

 0.0𝑒𝑖2𝜋(0.0)
) (

1.0𝑒𝑖2𝜋(1.0),

 0.0𝑒𝑖2𝜋(0.0)
)  (

1.0𝑒𝑖2𝜋(1.0),

 0.0𝑒𝑖2𝜋(0.0)
)  (

1.0𝑒𝑖2𝜋(1.0),

 0.0𝑒𝑖2𝜋(0.0)
) 

𝖇𝟓 
 (
0.0𝑒𝑖2𝜋(0.0),

 1. 0𝑒𝑖2𝜋(1.0)
) (

1.0𝑒𝑖2𝜋(1.0),

 0.0𝑒𝑖2𝜋(0.0)
)  (

0.0𝑒𝑖2𝜋(0.0),

 1. 0𝑒𝑖2𝜋(1.0)
)  (

1.0𝑒𝑖2𝜋(1.0),

 0.0𝑒𝑖2𝜋(0.0)
) 

𝖇𝟔 
 (
1.0𝑒𝑖2𝜋(1.0),

 0.0𝑒𝑖2𝜋(0.0)
)  (

0.0𝑒𝑖2𝜋(0.0),

 1. 0𝑒𝑖2𝜋(1.0)
) (

1.0𝑒𝑖2𝜋(1.0),

 0.0𝑒𝑖2𝜋(0.0)
) (

1.0𝑒𝑖2𝜋(1.0),

 0.0𝑒𝑖2𝜋(0.0)
) 

 

Table 14. The possible CIFSS linked with (ρ,ℋ) with threshold 3. 

(𝝆𝟑, 𝓥) 𝓿𝟏 𝓿𝟐 𝓿𝟑 𝓿𝟒 

𝖇𝟏 
 (
0.0𝑒𝑖2𝜋(0.0),

 1. 0𝑒𝑖2𝜋(1.0)
) (

1.0𝑒𝑖2𝜋(1.0),

 0.0𝑒𝑖2𝜋(0.0)
)  (

0.0𝑒𝑖2𝜋(0.0),

 1. 0𝑒𝑖2𝜋(1.0)
)  (

0.0𝑒𝑖2𝜋(0.0),

 1. 0𝑒𝑖2𝜋(1.0)
) 

𝖇𝟐 
(
1.0𝑒𝑖2𝜋(1.0),

 0.0𝑒𝑖2𝜋(0.0)
) (

0.0𝑒𝑖2𝜋(0.0),

 1. 0𝑒𝑖2𝜋(1.0)
) (

0.0𝑒𝑖2𝜋(0.0),

 1. 0𝑒𝑖2𝜋(1.0)
) (

0.0𝑒𝑖2𝜋(0.0),

 1. 0𝑒𝑖2𝜋(1.0)
) 

𝖇𝟑 
 (
0.0𝑒𝑖2𝜋(0.0),

 1. 0𝑒𝑖2𝜋(1.0)
)  (

0.0𝑒𝑖2𝜋(0.0),

 1. 0𝑒𝑖2𝜋(1.0)
) (

1.0𝑒𝑖2𝜋(1.0),

 0.0𝑒𝑖2𝜋(0.0)
) (

1.0𝑒𝑖2𝜋(1.0),

 0.0𝑒𝑖2𝜋(0.0)
) 

𝖇𝟒 
(
1.0𝑒𝑖2𝜋(1.0),

 0.0𝑒𝑖2𝜋(0.0)
) (

1.0𝑒𝑖2𝜋(1.0),

 0.0𝑒𝑖2𝜋(0.0)
) (

1.0𝑒𝑖2𝜋(1.0),

 0.0𝑒𝑖2𝜋(0.0)
) (

1.0𝑒𝑖2𝜋(1.0),

 0.0𝑒𝑖2𝜋(0.0)
) 
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𝖇𝟓 
 (
0.0𝑒𝑖2𝜋(0.0),

 1. 0𝑒𝑖2𝜋(1.0)
) (

1.0𝑒𝑖2𝜋(1.0),

 0.0𝑒𝑖2𝜋(0.0)
)  (

0.0𝑒𝑖2𝜋(0.0),

 1. 0𝑒𝑖2𝜋(1.0)
) (

0.0𝑒𝑖2𝜋(0.0),

 1. 0𝑒𝑖2𝜋(1.0)
) 

𝖇𝟔 
 (
0.0𝑒𝑖2𝜋(0.0),

 1. 0𝑒𝑖2𝜋(1.0)
)  (

0.0𝑒𝑖2𝜋(0.0),

 1. 0𝑒𝑖2𝜋(1.0)
) (

1.0𝑒𝑖2𝜋(1.0),

 0.0𝑒𝑖2𝜋(0.0)
) (

1.0𝑒𝑖2𝜋(1.0),

 0.0𝑒𝑖2𝜋(0.0)
) 

 

Table 15. The possible CIFSS linked with (ρ,ℋ) with threshold 4. 

(𝝆𝟒, 𝓥) 𝓿𝟏 𝓿𝟐 𝓿𝟑 𝓿𝟒 

𝖇𝟏 
 (
0.0𝑒𝑖2𝜋(0.0),

 1. 0𝑒𝑖2𝜋(1.0)
) (

0.0𝑒𝑖2𝜋(0.0),

 1. 0𝑒𝑖2𝜋(1.0)
)  (

0.0𝑒𝑖2𝜋(0.0),

 1. 0𝑒𝑖2𝜋(1.0)
)  (

0.0𝑒𝑖2𝜋(0.0),

 1. 0𝑒𝑖2𝜋(1.0)
) 

𝖇𝟐 
 (
1.0𝑒𝑖2𝜋(1.0),

 0.0𝑒𝑖2𝜋(0.0)
) (

0.0𝑒𝑖2𝜋(0.0),

 1. 0𝑒𝑖2𝜋(1.0)
) (

0.0𝑒𝑖2𝜋(0.0),

 1. 0𝑒𝑖2𝜋(1.0)
) (

0.0𝑒𝑖2𝜋(0.0),

 1. 0𝑒𝑖2𝜋(1.0)
) 

𝖇𝟑 
 (
0.0𝑒𝑖2𝜋(0.0),

 1. 0𝑒𝑖2𝜋(1.0)
)  (

0.0𝑒𝑖2𝜋(0.0),

 1. 0𝑒𝑖2𝜋(1.0)
) (

0.0𝑒𝑖2𝜋(0.0),

 1. 0𝑒𝑖2𝜋(1.0)
)  (

1.0𝑒𝑖2𝜋(1.0),

 0.0𝑒𝑖2𝜋(0.0)
) 

𝖇𝟒 
(
1.0𝑒𝑖2𝜋(1.0),

 0.0𝑒𝑖2𝜋(0.0)
)  (

0.0𝑒𝑖2𝜋(0.0),

 1. 0𝑒𝑖2𝜋(1.0)
)  (

1.0𝑒𝑖2𝜋(1.0),

 0.0𝑒𝑖2𝜋(0.0)
)  (

1.0𝑒𝑖2𝜋(1.0),

 0.0𝑒𝑖2𝜋(0.0)
) 

𝖇𝟓 
 (
0.0𝑒𝑖2𝜋(0.0),

 1. 0𝑒𝑖2𝜋(1.0)
) (

1.0𝑒𝑖2𝜋(1.0),

 0.0𝑒𝑖2𝜋(0.0)
)  (

0.0𝑒𝑖2𝜋(0.0),

 1. 0𝑒𝑖2𝜋(1.0)
) (

0.0𝑒𝑖2𝜋(0.0),

 1. 0𝑒𝑖2𝜋(1.0)
) 

𝖇𝟔 
 (
0.0𝑒𝑖2𝜋(0.0),

 1. 0𝑒𝑖2𝜋(1.0)
)  (

0.0𝑒𝑖2𝜋(0.0),

 1. 0𝑒𝑖2𝜋(1.0)
)  (

0.0𝑒𝑖2𝜋(0.0),

 1. 0𝑒𝑖2𝜋(1.0)
) (

1.0𝑒𝑖2𝜋(1.0),

 0.0𝑒𝑖2𝜋(0.0)
) 

 

Table 16. The possible CIFSS linked with (ρ,ℋ) with threshold 5. 

(𝝆𝟓, 𝓥) 𝓿𝟏 𝓿𝟐 𝓿𝟑 𝓿𝟒 

𝖇𝟏 
 (
0.0𝑒𝑖2𝜋(0.0),

 1. 0𝑒𝑖2𝜋(1.0)
) (

0.0𝑒𝑖2𝜋(0.0),

 1. 0𝑒𝑖2𝜋(1.0)
)  (

0.0𝑒𝑖2𝜋(0.0),

 1. 0𝑒𝑖2𝜋(1.0)
)  (

0.0𝑒𝑖2𝜋(0.0),

 1. 0𝑒𝑖2𝜋(1.0)
) 

𝖇𝟐 
(
0.0𝑒𝑖2𝜋(0.0),

 1. 0𝑒𝑖2𝜋(1.0)
) (

0.0𝑒𝑖2𝜋(0.0),

 1. 0𝑒𝑖2𝜋(1.0)
) (

0.0𝑒𝑖2𝜋(0.0),

 1. 0𝑒𝑖2𝜋(1.0)
) (

0.0𝑒𝑖2𝜋(0.0),

 1. 0𝑒𝑖2𝜋(1.0)
) 

𝖇𝟑 
 (
0.0𝑒𝑖2𝜋(0.0),

 1. 0𝑒𝑖2𝜋(1.0)
)  (

0.0𝑒𝑖2𝜋(0.0),

 1. 0𝑒𝑖2𝜋(1.0)
) (

0.0𝑒𝑖2𝜋(0.0),

 1. 0𝑒𝑖2𝜋(1.0)
)  (

0.0𝑒𝑖2𝜋(0.0),

 1. 0𝑒𝑖2𝜋(1.0)
) 

𝖇𝟒 
 (
0.0𝑒𝑖2𝜋(0.0),

 1. 0𝑒𝑖2𝜋(1.0)
)  (

0.0𝑒𝑖2𝜋(0.0),

 1. 0𝑒𝑖2𝜋(1.0)
) (

0.0𝑒𝑖2𝜋(0.0),

 1. 0𝑒𝑖2𝜋(1.0)
) (

1.0𝑒𝑖2𝜋(1.0),

 0.0𝑒𝑖2𝜋(0.0)
) 

𝖇𝟓 
 (
0.0𝑒𝑖2𝜋(0.0),

 1. 0𝑒𝑖2𝜋(1.0)
) (

1.0𝑒𝑖2𝜋(1.0),

 0.0𝑒𝑖2𝜋(0.0)
)  (

0.0𝑒𝑖2𝜋(0.0),

 1. 0𝑒𝑖2𝜋(1.0)
) (

0.0𝑒𝑖2𝜋(0.0),

 1. 0𝑒𝑖2𝜋(1.0)
) 

𝖇𝟔 
 (
0.0𝑒𝑖2𝜋(0.0),

 1. 0𝑒𝑖2𝜋(1.0)
)  (

0.0𝑒𝑖2𝜋(0.0),

 1. 0𝑒𝑖2𝜋(1.0)
)  (

0.0𝑒𝑖2𝜋(0.0),

 1. 0𝑒𝑖2𝜋(1.0)
)  (

0.0𝑒𝑖2𝜋(0.0),

 1. 0𝑒𝑖2𝜋(1.0)
) 

 

Further, we interpret the definitions of null and whole 

CIFN-SS.  

Definition 33: Let (𝜌,ℋ) be a CIFNSS over 𝔅, where 

ℋ = (𝐽, 𝒱, 𝑁) be an N-SS over 𝔅. The (𝜌 ,ℋ) is 

called null CIFN-SS, designated by (Θ,ℋ) if ∀ 𝓋𝑘 ∈
𝒱, (Ο, 𝒱, 𝑁) is an N-SS on 𝔅 with the null CIFS Ο′ of 

𝔅, where  Ο′(𝔟) = (0.0𝑒𝑖2𝜋(0.0), 1. 0𝑒𝑖2𝜋(1.0) ) ∀ 𝔟 ∈

𝔅.  

Definition 34: Let (𝜌,ℋ) be a CIFNSS over 𝔅, where 

ℋ = (𝐽, 𝒱, 𝑁) be an N-SS over 𝔅. The (𝜌 ,ℋ) is 

called whole CIFN-SS, designated by (𝜛,ℋ) if 

∀ 𝓋𝑘 ∈ 𝒱, (𝒲,𝒱,𝑁) is an N-SS on 𝔅 with the whole 

CIFS Λ of 𝔅, where  Λ(𝔟) =

(1. 0𝑒𝑖2𝜋(1.0), 0.0𝑒𝑖2𝜋(0.0)) ∀ 𝔟 ∈ 𝔅.  

 

 

 

 

IV. APPLICATIONS 

 

 In this part of the manuscript, we interpret the 

DM method that handles the model we have described 

in section 3. Consequently, we interpret the algorithm 

for issues that are identified by CIFN-SS. To show its 

credibility and effectiveness, we apply it to real-life 

problems that are completely developed.  

We defined the following algorithm of CIFN-SSs for 

DM.  

Algorithm: The selection of an alternative in a CIFN-

SS.  

1. Input 𝔅 = {𝔟1, 𝔟2, 𝔟3, … , 𝔟𝑝} as universe set 

2. Input 𝒱 = {𝓋1, 𝓋2, 𝓋3, … , 𝓋𝑞} ⊆ 𝒰 as a set of 

attributes.  

3. Compose a CIFN-SS in tabular representation. 

4. Compose the tables of CMGs and CNMGs.  
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5. Calculate the comparison tables for both CMGs 

and CNMGs. (two complex MGs or NMGs will 

be compared by lexicographical order i.e. if 𝜇1
𝑀 =

𝛾1
𝑀𝑒

𝑖2𝜋(𝜔
𝛾1
𝑀)
, 𝜇2
𝑀 = 𝛾2

𝑀𝑒
𝑖2𝜋(𝜔

𝛾2
𝑀)

 be two 

complex MGs then 𝛾1
𝑀 < 𝛾2

𝑀 then we say 𝜇1
𝑀 <

𝜇2
𝑀. But if 𝛾1

𝑀 = 𝛾2
𝑀 then we observe the phase 

term i.e. if 𝜔𝛾1𝑀 < 𝜔𝛾2𝑀 then 𝜇1
𝑀 < 𝜇2

𝑀. If both 

𝛾1
𝑀 = 𝛾2

𝑀 and 𝜔𝛾1𝑀 = 𝜔𝛾2𝑀 then we say the 𝜇1
𝑀 =

𝜇2
𝑀. Similarly, we compare CNMGs.)  

6. Compose the score tables for both CMGs and 

CNMGs.  

7. Calculate the final score by subtracting the 

CNMG score from CMG score for each 

alternative.  

8. Note the highest score with maximum grades, if it 

is in 𝑘 − 𝑡ℎ row, then we will select the option 𝔟𝑘, 

1 ≤ 𝑘 ≤ 𝑛.  
 

4.1. Selection of best and economical bus 

Public transport or public transportation is a system of 

transport, totally different from private transport, 

usually, managed by schedule, operated on confirmed 

routes, and charges a fixed fee for each trip. 

Governments provide different types of public 

transport such as city buses, trains, trams (light rail), 

etc. In the following example, we will see that the 

government wants to find out the best and most 

economical bus in 6 public transport buses.   

Example 11. Reconsider the example (1) in which 𝔅 =
{𝔟1, 𝔟2, 𝔟3, 𝔟4, 𝔟5, 𝔟6} is a set of 6 public transport 

buses and 𝒱 = {𝓋1 = 𝐼𝑛𝑐𝑜𝑚𝑒 𝑜𝑓 𝑏𝑢𝑠, 𝓋2 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑠𝑠𝑎𝑛𝑔𝑒𝑟, 𝓋3 = 𝑠ℎ𝑜𝑟𝑡 𝑟𝑜𝑢𝑡𝑒, 𝓋4 =
𝑠𝑎𝑣𝑖𝑛𝑔 𝑓𝑢𝑒𝑙} is a set of parameters. The 6-SS is given 

in table (2) and CIF6-SS is presented in table (3).    

Now we construct tables for CMGs and CNMGs. The 

CMGs are given in table (18) and CNMGs are given 

in table (19) 

Table 17. The tabular form of CMGs interpreted in example 11. 

𝝁𝑴 𝓿𝟏 𝓿𝟐 𝓿𝟑 𝓿𝟒 

𝖇𝟏 0.4𝑒𝑖2𝜋(0.45) 0.6𝑒𝑖2𝜋(0.7) 0.2𝑒𝑖2𝜋(0.31) 0.18𝑒𝑖2𝜋(0.29) 
𝖇𝟐 0.8𝑒𝑖2𝜋(0.75) 0.37𝑒𝑖2𝜋(0.45) 0.42𝑒𝑖2𝜋(0.5) 0.38𝑒𝑖2𝜋(0.65) 
𝖇𝟑 0.05𝑒𝑖2𝜋(0.1) 0.2𝑒𝑖2𝜋(0.28) 0.8𝑒𝑖2𝜋(0.6) 0.77𝑒𝑖2𝜋(0.85) 
𝖇𝟒 0.75𝑒𝑖2𝜋(0.88) 0.9𝑒𝑖2𝜋(0.4) 0.95𝑒𝑖2𝜋(0.8) 0.96𝑒𝑖2𝜋(0.96) 
𝖇𝟓 0.1𝑒𝑖2𝜋(0.14) 0.9𝑒𝑖2𝜋(0.92) 0.07𝑒𝑖2𝜋(0.1) 0.35𝑒𝑖2𝜋(0.53) 
𝖇𝟔 0.48𝑒𝑖2𝜋(0.5) 0.23𝑒𝑖2𝜋(0.33) 0.6𝑒𝑖2𝜋(0.4) 0.82𝑒𝑖2𝜋(0.79) 

Table 18. The tabular form of CNMGs interpreted in example 11. 

𝝁𝑵 𝓿𝟏 𝓿𝟐 𝓿𝟑 𝓿𝟒 

𝖇𝟏 0.2𝑒𝑖2𝜋(0.5) 0.1𝑒𝑖2𝜋(0.15) 0.7𝑒𝑖2𝜋(0.4) 0.45𝑒𝑖2𝜋(0.65) 
𝖇𝟐 0.1𝑒𝑖2𝜋(0.2) 0.6𝑒𝑖2𝜋(0.3) 0.4𝑒𝑖2𝜋(0.4) 0.33𝑒𝑖2𝜋(0.23) 
𝖇𝟑 0.5𝑒𝑖2𝜋(0.1) 0.7𝑒𝑖2𝜋(0.5) 0.1𝑒𝑖2𝜋(0.3) 0.17𝑒𝑖2𝜋(0.1) 
𝖇𝟒 0.2𝑒𝑖2𝜋(0.1) 0.09𝑒𝑖2𝜋(0.5) 0.04𝑒𝑖2𝜋(0.15) 0.03𝑒𝑖2𝜋(0.03) 
𝖇𝟓 0.1𝑒𝑖2𝜋(0.14) 0.05𝑒𝑖2𝜋(0.03) 0.9𝑒𝑖2𝜋(0.7) 0.61𝑒𝑖2𝜋(0.27) 
𝖇𝟔 0.3𝑒𝑖2𝜋(0.3) 0.52𝑒𝑖2𝜋(0.63) 0.25𝑒𝑖2𝜋(0.4) 0.1𝑒𝑖2𝜋(0.15) 

 

Next, we will construct the comparison tables for 

CMGs and CNMGs which are given in tables (20) and 

(21) respectively.  

 

Table 19. Comparison table for CMGs interpreted in 

example 11. 

. 𝖇𝟏 𝖇𝟐 𝖇𝟑 𝖇𝟒 𝖇𝟓 𝖇𝟔 

𝖇𝟏 4 1 2 0 2 1 

𝖇𝟐 3 4 2 1 3 2 

𝖇𝟑 2 2 4 0 2 1 

𝖇𝟒 4 3 4 4 3 4 

𝖇𝟓 2 1 2 1 4 1 

𝖇𝟔 3 2 3 0 3 4 

 

Table 20. Comparison table for CNMGs interpreted 

in example 11. 

. 𝖇𝟏 𝖇𝟐 𝖇𝟑 𝖇𝟒 𝖇𝟓 𝖇𝟔 

𝖇𝟏 4 3 2 3 2 2 

𝖇𝟐 1 4 2 3 2 3 

𝖇𝟑 2 2 4 4 2 2 

𝖇𝟒 0 1 0 4 2 0 

𝖇𝟓 2 2 2 2 4 2 

𝖇𝟔 2 1 1 4 2 4 

 

Now we will calculate the complex membership (CM) 

and complex non-membership (CNM) scores. For 

finding both scores we will subtract the column sum 

from the row sum of the table (20) and (21). Both 

scores are given in tables (22) and (23) respectively.   
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Table 21. CM score table for example 11. 

 Grade sum 

(∑𝔬𝓋𝑖

4

𝑖=1

) 

 

Row 

sum 

 (ℜ𝓈1)  

 

Column 

sum 
(ℭ𝓈1)  

 

Ω1
= ℜ𝓈1
− ℭ𝓈2 

𝖇𝟏 7 10 18 8 

𝖇𝟐 10 15 13 2 

𝖇𝟑 8 11 17 −6 

𝖇𝟒 16 22 6 16 

𝖇𝟓 7 11 17 −6 

𝖇𝟔 10 15 13 2 

 

Table 22. CNM score table for example 11. 

 Grade 

sum 

(∑𝔬𝓋𝑖

4

𝑖=1

) 

 

Row 

sum 

 (ℜ𝓈2)  

 

Column 

sum 
(ℭ𝓈2)  

 

Ω2
= ℜ𝓈2
− ℭ𝓈2) 

𝖇𝟏 7 16 11 5 

𝖇𝟐 10 15 13 2 

𝖇𝟑 8 16 11 5 

𝖇𝟒 16 7 20 −13 

𝖇𝟓 7 14 14 0 

𝖇𝟔 10 14 13 1 

 

The final score for each alternative is calculated by 

subtracting the CNMG score (Ω2) from CMG score 
(Ω1) as given in table (24). 

 

Table 23. Final score along with the grades linked 

with CIF6-SS for example 11. 

 Grade sum 

(∑𝔬𝓋𝑖

4

𝑖=1

) 

 

Ω1 

 

Ω2  
 

Final 

Score 

Ω2
− Ω1 

𝖇𝟏 7 8 5 3 

𝖇𝟐 10 2 2 0 

𝖇𝟑 8 −6 5 −11 

𝖇𝟒 16 16 −13 29 

𝖇𝟓 7 −6 0 −6 

𝖇𝟔 10 2 1 1 

 

It is clear from the table (24) that the highest score is 

29, which is got by bus 𝔟4. So the bus 𝔟4 is the best 

and most economical bus of the 6 public transport 

buses.  

 

4.2. Selection of appropriate teaching method  

Teaching is the way toward going to people’s 

requirements, experiences and emotions, and 

mediating so they learn specific things and go past the 

given. Teaching is the world’s biggest profession and 

the toughest job to do. Every teacher wants to deliver 

maximum knowledge to the class but it is not possible 

without a proper teaching method. There are a lot of 

teaching methods all around the world. We will show 

in the following example how CIFN-SS help teachers 

in the selection of appropriate teaching method.  

Example 12: Let 𝔗 = {𝔱1, 𝔱2, 𝔱3, 𝔱4, 𝔱5} be set of 5 short 

listed teaching methods and 𝒱 = {𝓋1, 𝓋2, 𝓋3, 𝓋4} be 

set of parameters, and on the basis of these parameters 

teaching an expert allocate grading to the teaching 

methods. The information obtained from real data is 

given in table (25).  

 

Table 24. information obtained from real data 

interpreted in example 12. 

𝕿 𝓿𝟏 𝓿𝟐 𝓿𝟑 𝓿𝟒 

𝖙𝟏 ×××× ××× ××× ×××× 

𝖙𝟐 ∘ ×× × ××× 

𝖙𝟑 ×× ∘ ×× ×××× 

𝖙𝟒 × ××× ×× ××× 

𝖙𝟓 ∘ ××× ∘ ×× 

    

where 

Four cross marks represent ‘Excellent’, 

Three cross marks represent ‘Very Good’, 

Two cross marks represent ‘Good’, 

One cross mark represents ‘Normal’, 

Hole represents ‘Poor’, 

The set 𝔒 = {0, 1, 2,3,4} can undoubtedly link with 

the cross marks presented in table (25), where 

0 denotes “∘”,  

1 denotes “×”, 

2 denotes “××”, 

3 denotes “×××”, 

4 denotes “××××”, 

The tabular representation of 5-SS is described in table 

(26). 

 

Table 25. The tabular representation of 5-SS 

interpreted in example 12. 

𝕿 𝓿𝟏 𝓿𝟐 𝓿𝟑 𝓿𝟒 

𝖙𝟏 4 3 3 4 

𝖙𝟐 0 2 1 3 

𝖙𝟑 2 0 2 4 

𝖙𝟒 1 3 2 3 

𝖙𝟓 0 3 0 2 

 

The grading criteria for CMG and CNMG of elements 

of the set 𝔗 are presented below.  

0.0 ≤ ∆𝜇𝑀(𝔱) < 0.2 when 𝔬 = 0; 

0.2 ≤ ∆𝜇𝑀(𝔱) < 0.4 when 𝔬 = 1; 

0.4 ≤ ∆𝜇𝑀(𝔱) < 0.6 when 𝔬 = 2; 

0.6 ≤ ∆𝜇𝑀(𝔱) < 0.8 when 𝔬 = 3; 

0.8 ≤ ∆𝜇𝑀(𝔱) ≤ 1.0 when 𝔬 = 4. 
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Where ∆𝜇𝑀(𝔱) =
𝛾𝑀(𝔱)+𝜔

𝛾𝑀
(𝔱)

2
, and 0 ≤ 𝜇𝑀 + 𝜇𝑁 ≤ 1. 

The tabular representation of CIF5-SS is given below 

in table (27).  

 

Table 26. The tabular representation of CIF5-S interpreted in example 12. 

(𝝆, (𝑱, 𝓥, 𝟓)) 𝓿𝟏 𝓿𝟐 𝓿𝟑 𝓿𝟒 

𝖙𝟏 
4, (

0.9𝑒𝑖2𝜋(0.85),

 0.08𝑒𝑖2𝜋(0.1)
) 3, (

0.65𝑒𝑖2𝜋(0.75),

0.2𝑒𝑖2𝜋(0.1)
) 3, (

0.7𝑒𝑖2𝜋(0.6),

 0.1𝑒𝑖2𝜋(0.3)
) 4, (

0.98𝑒𝑖2𝜋(0.9),

 0.01𝑒𝑖2𝜋(0.05)
) 

𝖙𝟐 
0, (

0.15𝑒𝑖2𝜋(0.1),

 0.7𝑒𝑖2𝜋(0.8)
) 2, (

0.47𝑒𝑖2𝜋(0.45),

 0. 5𝑒𝑖2𝜋(0.4)
) 1, (

0.22𝑒𝑖2𝜋(0.3),

 0. 5𝑒𝑖2𝜋(0.5)
) 3, (

0.68𝑒𝑖2𝜋(0.78),

 0. 2𝑒𝑖2𝜋(0.15)
) 

𝖙𝟑 
2, (

0.5𝑒𝑖2𝜋(0.4),

 0. 4𝑒𝑖2𝜋(0.5)
) 0, (

0.1𝑒𝑖2𝜋(0.14),

 0.7𝑒𝑖2𝜋(0.5)
) 2, (

0.55𝑒𝑖2𝜋(0.46),

 0.3𝑒𝑖2𝜋(0.5)
) 4, (

0.7𝑒𝑖2𝜋(0.9),

 0. 2𝑒𝑖2𝜋(0.05)
) 

𝖙𝟒 
1, (

0.3𝑒𝑖2𝜋(0.38),

 0. 6𝑒𝑖2𝜋(0.33)
) 3, (

0.76𝑒𝑖2𝜋(0.68),

 0.2𝑒𝑖2𝜋(0.3)
) 2, (

0.43𝑒𝑖2𝜋(0.5),

 0. 43𝑒𝑖2𝜋(0.4)
) 3, (

0.69𝑒𝑖2𝜋(0.71),

 0. 3𝑒𝑖2𝜋(0.2)
) 

𝖙𝟓 
0, (

0.13𝑒𝑖2𝜋(0.1),

 0.36𝑒𝑖2𝜋(0.46)
) 3, (

0.74𝑒𝑖2𝜋(0.75),

 0.1𝑒𝑖2𝜋(0.15)
) 0, (

0.07𝑒𝑖2𝜋(0.1),

 0. 9𝑒𝑖2𝜋(0.7)
) 2, (

0.45𝑒𝑖2𝜋(0.53),

 0. 51𝑒𝑖2𝜋(0.27)
) 

Now we construct tables for CMGs and CNMGs. The 

CMGs are given in table (28) and CNMGs are given 

in table (29). 

 

 

 

Table 27. The tabular form of CM interpreted in example 12. 

𝝁𝑴 𝓿𝟏 𝓿𝟐 𝓿𝟑 𝓿𝟒 

𝖙𝟏 0.9𝑒𝑖2𝜋(0.85) 0.65𝑒𝑖2𝜋(0.75) 0.7𝑒𝑖2𝜋(0.6) 0.98𝑒𝑖2𝜋(0.9) 
𝖙𝟐 0.15𝑒𝑖2𝜋(0.1) 0.47𝑒𝑖2𝜋(0.45) 0.22𝑒𝑖2𝜋(0.3) 0.68𝑒𝑖2𝜋(0.78) 
𝖙𝟑 0.5𝑒𝑖2𝜋(0.4) 0.1𝑒𝑖2𝜋(0.14) 0.55𝑒𝑖2𝜋(0.46) 0.7𝑒𝑖2𝜋(0.9) 
𝖙𝟒 0.3𝑒𝑖2𝜋(0.38) 0.76𝑒𝑖2𝜋(0.68) 0.43𝑒𝑖2𝜋(0.5) 0.69𝑒𝑖2𝜋(0.71) 
𝖙𝟓 0.13𝑒𝑖2𝜋(0.1) 0.74𝑒𝑖2𝜋(0.75) 0.07𝑒𝑖2𝜋(0.1) 0.45𝑒𝑖2𝜋(0.53) 

 

Table 28. The tabular form of CNMGs interpreted in example 12. 

𝝁𝑵 𝓿𝟏 𝓿𝟐 𝓿𝟑 𝓿𝟒 

𝖙𝟏 0.08𝑒𝑖2𝜋(0.1) 0.2𝑒𝑖2𝜋(0.1) 0.1𝑒𝑖2𝜋(0.3) 0.01𝑒𝑖2𝜋(0.05) 
𝖙𝟐 0.7𝑒𝑖2𝜋(0.8) 0.5𝑒𝑖2𝜋(0.4) 0.5𝑒𝑖2𝜋(0.5) 0.2𝑒𝑖2𝜋(0.15) 
𝖙𝟑 0.4𝑒𝑖2𝜋(0.5) 0.7𝑒𝑖2𝜋(0.6) 0.3𝑒𝑖2𝜋(0.5) 0.2𝑒𝑖2𝜋(0.05) 
𝖙𝟒 0.6𝑒𝑖2𝜋(0.33) 0.2𝑒𝑖2𝜋(0.3) 0.43𝑒𝑖2𝜋(0.4) 0.3𝑒𝑖2𝜋(0.2) 
𝖙𝟓 0.36𝑒𝑖2𝜋(0.46) 0.1𝑒𝑖2𝜋(0.15) 0.9𝑒𝑖2𝜋(0.7) 0.51𝑒𝑖2𝜋(0.27) 

Next, we will construct the comparison tables for 

CMGs and CNMGs which are given in table (30) and 

(31) respectively.  

 

Table 29. Comparison table for CMGs interpreted in 

example 12. 

. 𝖙𝟏 𝖙𝟐 𝖙𝟑 𝖙𝟒 𝖙𝟓 

𝖙𝟏 4 4 4 3 3 

𝖙𝟐 0 4 1 0 3 

𝖙𝟑 0 3 4 3 3 

𝖙𝟒 1 4 1 4 4 

𝖙𝟓 1 1 1 0 4 

Table 30. comparison table for CNMGs interpreted in 

example 12 . 

. 𝖙𝟏 𝖙𝟐 𝖙𝟑 𝖙𝟒 𝖙𝟓 

𝖙𝟏 4 0 0 0 1 

𝖙𝟐 4 4 3 2 2 

𝖙𝟑 4 1 4 1 2 

𝖙𝟒 4 2 3 4 2 

𝖙𝟓 3 2 2 2 4 

Now we will calculate the CM and CNM scores. For 

finding both scores we will subtract the column sum 

from the row sum of the table (30) and (31). Both 

scores are given in tables (32) and (33) respectively.   
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Table 31. CM score table for example 12. 

 Grade sum 

(∑𝔬𝓋𝑖

4

𝑖=1

) 

 

Row 

sum 

 (ℜ𝓈1)  

 

Column 

sum 
(ℭ𝓈1)  

 

Ω1
= ℜ𝓈1
− ℭ𝓈2 

𝖙𝟏 14 18 6 12 

𝖙𝟐 6 8 16 −8 

𝖙𝟑 8 13 11 2 

𝖙𝟒 9 14 10 4 

𝖙𝟓 5 7 17 −10 

 

Table 32. CNM score table interpreted in example 

12. 

 Grade sum 

(∑𝔬𝓋𝑖

4

𝑖=1

) 

 

Row 

sum 

 (ℜ𝓈2)  

 

Column 

sum 
(ℭ𝓈2)  

 

Ω2
= ℜ𝓈2
− ℭ𝓈2) 

𝖙𝟏 14 5 19 −14 

𝖙𝟐 6 15 9 6 

𝖙𝟑 8 12 12 0 

𝖙𝟒 9 15 9 6 

𝖙𝟓 5 13 11 2 

 

The final score for each alternative is calculated by 

subtracting the CNM score (Ω2) from CM score (Ω1) 
as given in table (34). 

 

Table 33. Final score along with the grades linked 

with CIF5-SS interpreted in example 12. 

 Grade sum 

(∑𝔬𝓋𝑖

4

𝑖=1

) 

 

Ω1 

 

Ω2  
 

Final 

Score 

Ω2
− Ω1 

𝖙𝟏 14 12 −14 26 

𝖙𝟐 6 −8 6 −14 

𝖙𝟑 8 2 0 2 

𝖙𝟒 9 4 6 −2 

𝖙𝟓 5 −10 2 −12 

 

It is clear from the table (34) that the highest score is 

26, which is got by the teaching method 𝔱1. So the 

teaching method 𝔱1 is the appropriate teaching method 

in short listed 5 teaching methods.  

 

4.3. Selection of a mask in COVID-19 

To keep ourselves safe in this pandemic we have to 

keep a social distance from each other and keep 

wearing a mask whenever we go outside. How we will 

select the best mask in too many masks. Here we will 

use CIFN-SS to select the best mask for ourselves. 

Let’s see the following example  

Example 13: Let 𝔐 = {𝔪1, 𝔪2, 𝔪3, 𝔪4} be set of 4 

masks and 𝒱 = {𝓋1, 𝓋2, 𝓋3} be set of parameters, and 

on the basis of these parameters, an expert allocates 

grading to the masks. The information obtained from 

real data is given in table (35).  

 

Table 34. the information obtained from real data 

interpreted in example 13. 

𝕸 𝓿𝟏 𝓿𝟐 𝓿𝟑 

𝖒𝟏 ×× ∘ ×× 

𝖒𝟐 × ×× ∘ 
𝖒𝟑 ××× ×××× ×××× 

𝖒𝟒 × ×× ××× 

    

where 

Four cross marks represent ‘Excellent’, 

Three cross marks represent ‘Very Good’, 

Two cross marks represent ‘Good’, 

One cross mark represents ‘Normal’, 

Hole represents ‘Poor’, 

The set 𝔒 = {0, 1, 2,3,4} can undoubtedly link with 

the cross marks presented in table (35), where 

0 denotes “∘”,  

1 denotes “×”, 

2 denotes “××”, 

3 denotes “×××”, 

4 denotes “××××”, 

The tabular representation of 5-SS is described in table 

(36). 

 

Table 35. The tabular representation of 5-SS 

interpreted in example 13. 

𝕸 𝓿𝟏 𝓿𝟐 𝓿𝟑 

𝖒𝟏 2 0 2 

𝖒𝟐 1 2 0 

𝖒𝟑 3 4 4 

𝖒𝟒 1 2 3 

 

The grading criteria for CMG and CNMG of elements 

of the set 𝔐 is presented below.  

0.0 ≤ ∆𝜇𝑀(𝔪) < 0.2 when 𝔬 = 0; 

0.2 ≤ ∆𝜇𝑀(𝔪) < 0.4 when 𝔬 = 1; 

0.4 ≤ ∆𝜇𝑀(𝔪) < 0.6 when 𝔬 = 2; 

0.6 ≤ ∆𝜇𝑀(𝔪) < 0.8 when 𝔬 = 3; 

0.8 ≤ ∆𝜇𝑀(𝔪) ≤ 1.0 when 𝔬 = 4. 

Where ∆𝜇𝑀(𝔪) =
𝛾𝑀(𝔪)+𝜔

𝛾𝑀
(𝔪)

2
, and 0 ≤ 𝜇𝑀 + 𝜇𝑁 ≤

1. The tabular representation of CIF5-SS is given 

below in table (37).  
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Table 36. The tabular representation of CIF5-SS interpreted in example 13. 

(𝝆, (𝑱, 𝓥, 𝟓)) 𝓿𝟏 𝓿𝟐 𝓿𝟑 

𝖒𝟏 
2, (

0.55𝑒𝑖2𝜋(0.46),

 0.3𝑒𝑖2𝜋(0.5)
) 0, (

0.15𝑒𝑖2𝜋(0.05),

0.5𝑒𝑖2𝜋(0.8)
) 2, (

0.45𝑒𝑖2𝜋(0.56),

 0.3𝑒𝑖2𝜋(0.3)
) 

𝖒𝟐 
1, (

0.25𝑒𝑖2𝜋(0.2),

 0.7𝑒𝑖2𝜋(0.6)
) 2, (

0.47𝑒𝑖2𝜋(0.45),

 0. 5𝑒𝑖2𝜋(0.4)
) 0, (

0.1𝑒𝑖2𝜋(0.13),

 0. 8𝑒𝑖2𝜋(0.6)
) 

𝖒𝟑 
3, (

0.79𝑒𝑖2𝜋(0.7),

 0. 2𝑒𝑖2𝜋(0.2)
) 4, (

0.95𝑒𝑖2𝜋(0.85),

 0.04𝑒𝑖2𝜋(0.1)
) 4, (

0.93𝑒𝑖2𝜋(0.88),

 0.05𝑒𝑖2𝜋(0.1)
) 

𝖒𝟒 
1, (

0.3𝑒𝑖2𝜋(0.38),

 0. 6𝑒𝑖2𝜋(0.33)
) 2, (

0.5𝑒𝑖2𝜋(0.58),

 0.3𝑒𝑖2𝜋(0.4)
) 3, (

0.65𝑒𝑖2𝜋(0.75),

 0. 33𝑒𝑖2𝜋(0.2)
) 

Now we construct tables for CMGs and CNMGs. The 

CMGs are given in table (38) and CNMGs are given 

in table (39) 

 

 

  

 

Table 37. The tabular form of CMGs interpreted in example 13. 

𝝁𝑴 𝓿𝟏 𝓿𝟐 𝓿𝟑 

𝖒𝟏 0.55𝑒𝑖2𝜋(0.46) 0.15𝑒𝑖2𝜋(0.05) 0.45𝑒𝑖2𝜋(0.56) 
𝖒𝟐 0.25𝑒𝑖2𝜋(0.2) 0.47𝑒𝑖2𝜋(0.45) 0.1𝑒𝑖2𝜋(0.13) 
𝖒𝟑 0.79𝑒𝑖2𝜋(0.7) 0.95𝑒𝑖2𝜋(0.85) 0.93𝑒𝑖2𝜋(0.88) 
𝖒𝟒 0.3𝑒𝑖2𝜋(0.38) 0.5𝑒𝑖2𝜋(0.58) 0.65𝑒𝑖2𝜋(0.75) 

Table 38. The tabular form of CNMGs interpreted in example 13. 

𝝁𝑵 𝓿𝟏 𝓿𝟐 𝓿𝟑 

𝖒𝟏 0.3𝑒𝑖2𝜋(0.5) 0.5𝑒𝑖2𝜋(0.8) 0.3𝑒𝑖2𝜋(0.3) 
𝖒𝟐 0.7𝑒𝑖2𝜋(0.6) 0.5𝑒𝑖2𝜋(0.4) 0.8𝑒𝑖2𝜋(0.6) 
𝖒𝟑 0.2𝑒𝑖2𝜋(0.2) 0.04𝑒𝑖2𝜋(0.1) 0.05𝑒𝑖2𝜋(0.1) 
𝖒𝟒 0.6𝑒𝑖2𝜋(0.33) 0.3𝑒𝑖2𝜋(0.4) 0.33𝑒𝑖2𝜋(0.2) 

Next, we will construct the comparison tables for 

CMGs and CNMGs which are given in tables (40) and 

(41) respectively.  

 

Table 39. Comparison table of CMGs interpreted in 

example 13. 

. 𝖒𝟏 𝖒𝟐 𝖒𝟑 𝖒𝟒 

𝖒𝟏 3 2 0 1 

𝖒𝟐 1 3 0 0 

𝖒𝟑 3 3 3 3 

𝖒𝟒 2 3 0 3 

 

Table 40. Comparison table of CNMGs interpreted in 

example 13. 

. 𝖒𝟏 𝖒𝟐 𝖒𝟑 𝖒𝟒 

𝖒𝟏 3 1 3 1 

𝖒𝟐 2 3 3 3 

𝖒𝟑 0 0 3 0 

𝖒𝟒 2 1 3 3 

 

Now we will calculate the CM and CNM scores. For 

finding both scores we will subtract the column sum 

from the row sum of the table (40) and (41). Both 

scores are given in tables (42) and (43) respectively.   

Table 41. CM score table for example 13. 

 Grade 

sum 

(∑𝔬𝓋𝑖

4

𝑖=1

) 

 

Row 

sum 

 (ℜ𝓈1)  

 

Column 

sum 
(ℭ𝓈1)  

 

Ω1
= ℜ𝓈1
− ℭ𝓈2 

𝖒𝟏 4 6 9 3 

𝖒𝟐 3 4 11 −7 

𝖒𝟑 11 12 3 9 

𝖒𝟒 6 8 7 1 

 

Table 42. CNM score table for example 13. 

 Grade 

sum 

(∑𝔬𝓋𝑖

4

𝑖=1

) 

 

Row 

sum 

 (ℜ𝓈2)  

 

Column 

sum 
(ℭ𝓈2)  

 

Ω2
= ℜ𝓈2
− ℭ𝓈2) 

𝖒𝟏 4 8 7 1 

𝖒𝟐 3 11 5 6 

𝖒𝟑 11 3 12 −9 

𝖒𝟒 6 9 7 2 
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The final score for each alternative is calculated by 

subtracting the CNM score (Ω2) from CM score (Ω1) 
as given in table (44). 

 

Table 43. Final score long with the grades linked 

with CIF5-SS for example 13. 

 Grade sum 

(∑𝔬𝓋𝑖

4

𝑖=1

) 

Ω1 Ω2  Final 

Score 

Ω2
− Ω1 

𝖒𝟏 4 3 1 2 

𝖒𝟐 3 −7 6 −13 

𝖒𝟑 11 9 −9 18 

𝖒𝟒 6 1 2 −1 

 

It is clear from the table (44) that the highest score is 

18, which is got by the mas 𝔪3. So the mask 𝔪3 is the 

best mask to use in this pandemic.  

 

V. COMPARISON 

 

 In this Section, we do a comparison of our novel 

model called CIFN-SS with some existing work done 

by Akram et al. [41]. Here 𝛾 = (𝛾𝑀, 𝛾𝑁) where 𝛾𝑀 be 

MG and 𝛾𝑁 be NMG in IFN-SS.  

Example 14: A family wants to go on a trip, for which 

a family has to select the best place. A family has the 

option of 4 places which are   𝔓 = {𝔭1, 𝔭2, 𝔭3, 𝔭4} and 

𝒱 = {𝓋1 = 𝐸𝑐𝑜𝑛𝑜𝑚𝑐𝑖𝑎𝑙, 𝓋2 = 𝑀𝑜𝑢𝑛𝑡𝑎𝑖𝑛, 𝓋3 =
𝑤𝑎𝑡𝑒𝑟} be set of parameters, on the basis of these 

parameters a team A of experts give rating and raking 

to these places. The information obtained from real 

data is given in table (45). 

 

Table 44. The information is obtained from real data 

disaplyed in example 14. 

𝕻 𝓿𝟏 𝓿𝟐 𝓿𝟑 

𝖕𝟏 ××× ∘ ×× 

𝖕𝟐 ×××× ××× ×××× 

𝖕𝟑 ∘ ×× × 

𝖕𝟒 ×× ×× ×× 

    

where 

Four cross marks represent ‘Excellent’, 

Three cross marks represent ‘Very Good’, 

Two cross marks represent ‘Good’, 

One cross mark represents ‘Normal’, 

Hole represents ‘Poor’, 

The set 𝔒 = {0, 1, 2,3,4} can undoubtedly link with 

the cross marks presented in table (45), where 

0 denotes “∘”,  

1 denotes “×”, 

2 denotes “××”, 

3 denotes “×××”, 

4 denotes “××××”, 

The tabular representation of 5-SS is described in table 

(46). 

 

Table 45. The tabular form of 5-SS disaplyed in 

example 14. 

𝕻 𝓿𝟏 𝓿𝟐 𝓿𝟑 

𝖕𝟏 3 0 2 

𝖕𝟐 4 3 4 

𝖕𝟑 0 2 1 

𝖕𝟒 2 2 2 

 

The grading criteria for MG and NMG of elements of 

the set 𝔓 is presented below as defined by Akram [41].  

0.0 ≤ 𝛾𝑀(𝔭) < 0.2 when 𝔬 = 0; 

0.2 ≤ 𝛾𝑀(𝔭) < 0.4 when 𝔬 = 1; 

0.4 ≤ 𝛾𝑀(𝔭) < 0.6 when 𝔬 = 2; 

0.6 ≤ 𝛾𝑀(𝔭) < 0.8 when 𝔬 = 3; 

0.8 ≤ 𝛾𝑀(𝔭) ≤ 1.0 when 𝔬 = 4. 

0 ≤ 𝛾𝑀 + 𝛾𝑁 ≤ 1. The tabular representation of IF5-

SS is given below in table (47). 

 

Table 46. The tabular form of IF5-SS disaplyed in 

example 14. 
(𝜸, (𝑱, 𝓥, 𝟓)) 𝓿𝟏 𝓿𝟐 𝓿𝟑 

𝖕𝟏 3, (0.7,0.2) 0, (0.1, 0.8) 2, (0.5, 0.4) 
𝖕𝟐 4, (0.95, 0.03) 3, (0.75, 0.1) 4, (0.93, 0.04) 
𝖕𝟑 0, (0.15, 0.8) 2, (0.45, 0.3) 1, (0.3, 0.6) 
𝖕𝟒 2, (0.55, 0.2) 2, (0.44, 0.5) 2, (0.5, 0.4) 

 

Now we have data in the form of IFN-SS. We can use 

both algorithms defined by Akram [41] and our 

proposed algorithm in section (4). Both algorithms 

will give the same result which we will see below.  

Compose the MG and NMG tables  

 

Table 47. The tabular form of MGs disaplyed in 

example 14. 

𝜸𝑴 𝓿𝟏 𝓿𝟐 𝓿𝟑 

𝖕𝟏 0.7 0.1 0.5 

𝖕𝟐 0.95 0.75 0.73 

𝖕𝟑 0.15 0.45 0.3 

𝖕𝟒 0.55 0.44 0.5 

 

Table 48. The tabular form of NMGs disaplyed in 

example 14. 

𝜸𝑵 𝓿𝟏 𝓿𝟐 𝓿𝟑 

𝖕𝟏 0.2 0.8 0.4 

𝖕𝟐 0.03 0.1 0.04 

𝖕𝟑 0.8 0.3 0.6 

𝖕𝟒 0.2 0.5 0.4 
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We can get CMG and CNMG tables in CIFN-SS by 

letting 1 = 𝑒𝑖2𝜋(0.0) which are given in tables (50) and 

(51).  

 

Table 49. The tabular form of CMGs disaplyed in 

example 14. 

𝜸𝑴 𝓿𝟏 𝓿𝟐 𝓿𝟑 

𝖕𝟏 0.7𝑒𝑖2𝜋(0.0) 0.1𝑒𝑖2𝜋(0.0) 0.5𝑒𝑖2𝜋(0.0) 
𝖕𝟐 0.95𝑒𝑖2𝜋(0.0) 0.75𝑒𝑖2𝜋(0.0) 0.73𝑒𝑖2𝜋(0.0) 
𝖕𝟑 0.15𝑒𝑖2𝜋(0.0) 0.45𝑒𝑖2𝜋(0.0) 0.3𝑒𝑖2𝜋(0.0) 
𝖕𝟒 0.55𝑒𝑖2𝜋(0.0) 0.44𝑒𝑖2𝜋(0.0) 0.5𝑒𝑖2𝜋(0.0) 

 

Table 50. The tabular form of CNMGs disaplyed in 

example 14. 

𝜸𝑵 𝓿𝟏 𝓿𝟐 𝓿𝟑 

𝖕𝟏 0.2𝑒𝑖2𝜋(0.0) 0.8𝑒𝑖2𝜋(0.0) 0.4𝑒𝑖2𝜋(0.0) 
𝖕𝟐 0.03𝑒𝑖2𝜋(0.0) 0.1𝑒𝑖2𝜋(0.0) 0.04𝑒𝑖2𝜋(0.0) 
𝖕𝟑 0.8𝑒𝑖2𝜋(0.0) 0.3𝑒𝑖2𝜋(0.0) 0.6𝑒𝑖2𝜋(0.0) 
𝖕𝟒 0.2𝑒𝑖2𝜋(0.0) 0.5𝑒𝑖2𝜋(0.0) 0.4𝑒𝑖2𝜋(0.0) 

 

Next, we will construct the comparison tables for 

MGs, NMGs, CMGs, and CNMGs which are given 

from tables (48) to (51). Note that the comparison 

tables by both algorithms defined by Akram [41] and 

our proposed algorithm will same so we will write one 

comparison table for both MG and CMG and one for 

NMG and CNMG.  

 

Table 51. Comparison table for both MG and CMG 

disaplyed in example 14. 

. 𝖕𝟏 𝖕𝟐 𝖕𝟑 𝖕𝟒 

𝖕𝟏 3 0 2 2 

𝖕𝟐 3 3 3 3 

𝖕𝟑 1 0 3 1 

𝖕𝟒 2 0 2 3 

 

Table 52. Comparison table for both NMG and 

CNMG. 

. 𝖕𝟏 𝖕𝟐 𝖕𝟑 𝖕𝟒 

𝖕𝟏 3 3 1 3 

𝖕𝟐 0 3 0 0 

𝖕𝟑 2 3 3 2 

𝖕𝟒 2 3 1 3 

 

Now we will calculate the membership and non-

membership scores. For finding both scores we will 

subtract the column sum from the row sum of tables 

(52) and (53). Both scores are given in the table (54) 

and (55) respectively.   

 

 

 

 

Table 53. membership score table for example 14. 

 Grade sum 

(∑𝔬𝓋𝑖

4

𝑖=1

) 

Row 

sum 

 (ℜ𝓈1)  

Column 

sum 
(ℭ𝓈1)  

Ω1
= ℜ𝓈1
− ℭ𝓈2 

𝖕𝟏 5 7 9 −2 

𝖕𝟐 11 12 3 9 

𝖕𝟑 3 5 10 −5 

𝖕𝟒 6 7 9 −2 

 

Table 54. non-membership score table for example 

14. 

 Grade 

sum 

(∑𝔬𝓋𝑖

4

𝑖=1

) 

Row 

sum 

 (ℜ𝓈2)  

Column 

sum 
(ℭ𝓈2)  

Ω2
= ℜ𝓈2
− ℭ𝓈2) 

𝖕𝟏 5 10 7 3 

𝖕𝟐 11 3 12 −9 

𝖕𝟑 3 10 5 5 

𝖕𝟒 6 9 8 1 

 

The final score for each alternative is calculated by 

subtracting the non-membership score (Ω2) from 

membership score (Ω1) as given in table (56). 

 

Table 55. Final score along with the grades linked 

with IF5-SS for example 14. 

 Grade sum 

(∑𝔬𝓋𝑖

4

𝑖=1

) 

Ω1 Ω2  Final 

Score 

Ω2 − Ω1 

𝖕𝟏 5 −2 3 −5 

𝖕𝟐 11 9 −9 18 

𝖕𝟑 3 −5 5 −10 

𝖕𝟒 6 −2 1 −3 

 

It is clear from tables (56) that the highest score is 18, 

which is got by the place 𝔭2. So the place 𝔭2is the best 

place where a family will go for a trip.  

As one can note that we get the result for IFN-SS 

through our proposed algorithm. We can easily 

transform IFN-SS to CIFN-SS by letting 1 = 𝑒𝑖2𝜋(0.0) 
and then we can apply an algorithm to get a solution 

in DM. what will happen, if a family also wants to 

know the view of another team of experts which is 

team B about these 4 places. The IFN-SS can’t provide 

them any type of information about team B of experts 

but our proposed novel model can help them in this. 

We can provide them with this additional information  

To show how our model can provide them with this 

information and show the supremacy and superiority 

of our novel model we reconsider the example (14) 

below. 
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Example 15: Let the example (14) along with the 

additional information of the places provided by 

another team of experts. The grading criteria for CMG 

and CNMG of elements of the set 𝔓 is presented below 

as   

0.0 ≤ ∆𝜇𝑀(𝔭) < 0.2 when 𝔬 = 0; 

0.2 ≤ ∆𝜇𝑀(𝔭) < 0.4 when 𝔬 = 1; 

0.4 ≤ ∆𝜇𝑀(𝔭) < 0.6 when 𝔬 = 2; 

0.6 ≤ ∆𝜇𝑀(𝔭) < 0.8 when 𝔬 = 3; 

0.8 ≤ ∆𝜇𝑀(𝔭) ≤ 1.0 when 𝔬 = 4. 

Where ∆𝜇𝑀(𝔭) =
𝛾𝑀(𝔭)+𝜔

𝛾𝑀
(𝔭)

2
, and 0 ≤ 𝜇𝑀 + 𝜇𝑁 ≤

1. The tabular representation of CIF5-SS is given 

below in table (57). 

 

Table 56. The tabular representation of CIF5-SS displayed in example 15. 

(𝝆, (𝑱, 𝓥, 𝟓)) 𝓿𝟏 𝓿𝟐 𝓿𝟑 

𝖕𝟏 
3, (

0.7𝑒𝑖2𝜋(0.65),

 0.2𝑒𝑖2𝜋(0.15)
) 0, (

0.1𝑒𝑖2𝜋(0.15),

 0.8𝑒𝑖2𝜋(0.7)
) 2, (

0.5𝑒𝑖2𝜋(0.5),

 0.4𝑒𝑖2𝜋(0.25)
) 

𝖕𝟐 
4, (

0.95𝑒𝑖2𝜋(0.9),

 0. 03𝑒𝑖2𝜋(0.05)
) 3, (

0.75𝑒𝑖2𝜋(0.7),

 0. 1𝑒𝑖2𝜋(0.2)
) 4, (

0.93𝑒𝑖2𝜋(0.9),

 0.04𝑒𝑖2𝜋(0.09)
) 

𝖕𝟑 
0, (

0.15𝑒𝑖2𝜋(0.1),

 0. 8𝑒𝑖2𝜋(0.75)
) 2, (

0.45𝑒𝑖2𝜋(0.5),

 0. 3𝑒𝑖2𝜋(0.4)
) 1, (

0.3𝑒𝑖2𝜋(0.35),

 0.6𝑒𝑖2𝜋(0.4)
) 

𝖕𝟒 
2, (

0.55𝑒𝑖2𝜋(0.45),

 0. 2𝑒𝑖2𝜋(0.4)
) 2, (

0.44𝑒𝑖2𝜋(0.55),

 0. 5𝑒𝑖2𝜋(0.3)
) 2, (

0.5𝑒𝑖2𝜋(0.45),

 0.4𝑒𝑖2𝜋(0.4)
) 

To elaborate that how our novel model can carry the 

additional information, let (
0.5𝑒𝑖2𝜋(0.45),

 0.4𝑒𝑖2𝜋(0.4)
) in the 

bottom right cell in the table (57). One can note that 

0.5 and 0.4 both carry the information about the view 

of team A of experts and 0.45 and 0.4 carry the 

information about the view of team B.  

Now we construct tables for CMGs and CNMGs. The 

CMGs are given in table (58) and CNMGs are given 

in table (59). 

 

Table 57. The tabular form of CMGs displayed in 

example 15. 

𝝁𝑴 𝓿𝟏 𝓿𝟐 𝓿𝟑 

𝖕𝟏 0.7𝑒𝑖2𝜋(0.65) 0.1𝑒𝑖2𝜋(0.15) 0.5𝑒𝑖2𝜋(0.5) 
𝖕𝟐 0.95𝑒𝑖2𝜋(0.9) 0.75𝑒𝑖2𝜋(0.7) 0.73𝑒𝑖2𝜋(0.9) 
𝖕𝟑 0.15𝑒𝑖2𝜋(0.1) 0.45𝑒𝑖2𝜋(0.5) 0.3𝑒𝑖2𝜋(0.35) 
𝖕𝟒 0.55𝑒𝑖2𝜋(0.45) 0.44𝑒𝑖2𝜋(0.55) 0.5𝑒𝑖2𝜋(0.45) 

 

Table 58. The tabular form of CNMGs displayed in 

example 15. 

𝝁𝑵 𝓿𝟏 𝓿𝟐 𝓿𝟑 

𝖕𝟏 0.2𝑒𝑖2𝜋(0.15) 0.8𝑒𝑖2𝜋(0.7) 0.4𝑒𝑖2𝜋(0.25) 
𝖕𝟐 0.03𝑒𝑖2𝜋(0.05) 0.1𝑒𝑖2𝜋(0.2) 0.04𝑒𝑖2𝜋(0.09) 
𝖕𝟑 0.8𝑒𝑖2𝜋(0.75) 0.3𝑒𝑖2𝜋(0.44) 0.6𝑒𝑖2𝜋(0.4) 
𝖕𝟒 0.2𝑒𝑖2𝜋(0.4) 0.5𝑒𝑖2𝜋(0.3) 0.4𝑒𝑖2𝜋(0.4) 

 

Next, we will construct the comparison tables for 

CMGs and CNMGs which are given in tables (60) and 

(61) respectively.  

 

 

Table 59. Comparison table of CMG displayed in 

example 15. 

. 𝖕𝟏 𝖕𝟐 𝖕𝟑 𝖕𝟒 

𝖕𝟏 3 0 2 2 

𝖕𝟐 3 3 3 3 

𝖕𝟑 1 0 3 1 

𝖕𝟒 1 0 2 3 

 

Table 60. Comparison table of CNMG displayed in 

example 15. 

. 𝖕𝟏 𝖕𝟐 𝖕𝟑 𝖕𝟒 

𝖕𝟏 3 3 1 1 

𝖕𝟐 0 3 0 0 

𝖕𝟑 2 3 3 2 

𝖕𝟒 2 3 1 3 

 

Now we will calculate the CM and CNM scores. For 

finding both scores we will subtract the column sum 

from the row sum of the table (60) and (61). Both 

scores are given in tables (62) and (63) respectively.   

 

Table 61. CM score table for example 15. 

 Grade sum 

(∑𝔬𝓋𝑖

4

𝑖=1

) 

Row 

sum 

 (ℜ𝓈1)  

Column 

sum 
(ℭ𝓈1)  

Ω1
= ℜ𝓈1
− ℭ𝓈2 

𝖕𝟏 5 7 8 −1 

𝖕𝟐 11 12 3 9 

𝖕𝟑 3 5 10 −5 

𝖕𝟒 6 6 9 −3 
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Table 62. CNM score table for example 15. 

 Grade 

sum 

(∑𝔬𝓋𝑖

4

𝑖=1

) 

Row 

sum 

 (ℜ𝓈2)  

Column 

sum 
(ℭ𝓈2)  

Ω2
= ℜ𝓈2
− ℭ𝓈2) 

𝖕𝟏 5 8 7 1 

𝖕𝟐 11 3 12 −9 

𝖕𝟑 3 10 5 5 

𝖕𝟒 6 9 6 3 

 

The final score for each alternative is calculated by 

subtracting the NM score (Ω2) from membership 

score (Ω1) as given in table (64). 

 

Table 63. Final score along with the grades linked 

with CIF5-SS for example 15. 

 Grade sum 

(∑𝔬𝓋𝑖

4

𝑖=1

) 

Ω1 Ω2  Final 

Score 

Ω2 − Ω1 

𝖕𝟏 5 −1 1 0 

𝖕𝟐 11 9 −9 18 

𝖕𝟑 3 −5 5 −10 

𝖕𝟒 6 −3 3 0 

 

It is clear from table (64) that the highest score is 18, 

which is got by the place 𝔭2. So the place 𝔭2is the best 

place where a family will go for trip.  

 

VI. CONCLUSION 

 

 The basic theme of this study was to diagnose a 

CIFN-SS which is the finest and richest structure to 

overcome the intricate and obstinate information 

which contains the parameters with grades in two-

dimension. CIFN-SS is the fusion of N-SS and CIFSS 

which modified a few prevailing theories such as FS, 

SS, N-SS, CFS, CFSS, IFS, IFSS, etc. Moreover, this 

study contained the basic properties and operations of 

the diagnosed CIFN-SS along with an example to 

illustrate them. Further, this study developed the 

relationship of the novel model with prevailing models 

such as CIFSSs and SSs. After that, in this manuscript, 

the credibility and efficiency of the diagnosed work 

are shown with the assistance of DM numerical 

examples. For solving these examples this study 

contained a novel algorithm in the setting of CIFN-SS. 

Finally, this study showed the supremacy of the 

diagnosed model by comparing it with a prevailing 

model such as IFN-SS.            

In the future, our aim is to review numerous literature 

like T-spherical FS (TSFS) [4], interval-valued TSFS 

[44], bipolar CFS [45], etc., and try to utilize it in the 

diagnosed work.   
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Abbreviations 

For better understanding, the abbreviations and full 

names are displayed in table 65.  

 

Table 64. The abbreviations and full names of 

various terminologies. 

Abbreviations Full Name 

FS Fuzzy set  

IFS Intuitionistic fuzzy set 

SS Soft Set 

N-SS N-soft set 

IFSS Intuitionistic fuzzy soft set 

IFN-SS Intuitionistic fuzzy N-soft set 

CFS Complex fuzzy set 

CFSS Complex fuzzy soft set 

CIFN-SS Complex intuitionistic fuzzy 

N-soft set 

DM Decision-making  

CMG Complex membership grade  

CNMG Complex non-membership 

grade  

CM Complex membership 

CNM Complex non-membership  

 

REFERENCES 

 

[1] Zadeh, L. A. (1965). Fuzzy sets. Information 

and control, 8(3), 338-353. 

[2] Atanassov, K. (2016). Intuitionistic fuzzy sets. 

International Journal Bioautomation, 20, 1. 

[3] Mahmood, T., Ullah, K., Khan, Q., & Jan, N. 

(2019). An approach toward decision-making 

and medical diagnosis problems using the 

concept of spherical fuzzy sets. Neural 

Computing and Applications, 31(11), 7041-

7053. 

[4] Ullah, K., Mahmood, T., & Jan, N. (2018). 

Similarity measures for T-spherical fuzzy sets 

with applications in pattern recognition. 

Symmetry, 10(6), 193. 

[5] Ullah, K., Mahmood, T., Jan, N., & Ahmad, Z. 

(2020). Policy decision making based on some 

averaging aggregation operators of t-spherical 

fuzzy sets; a multi-attribute decision making 

approach. Annals of Optimization Theory and 

Practice, 3(3), 69-92. 

[6] Liu, P., Munir, M., Mahmood, T., & Ullah, K. 

(2019). Some similarity measures for interval-



Technical Journal, University of Engineering and Technology (UET) Taxila, Pakistan           Vol. 27 No. 1-2022 

ISSN:1813-1786 (Print) 2313-7770 (Online) 

116 

valued picture fuzzy sets and their applications 

in decision making. Information, 10(12), 369. 

[7] Ullah, K. (2021). Picture fuzzy maclaurin 

symmetric mean operators and their 

applications in solving multiattribute decision-

making problems. Mathematical Problems in 

Engineering, 2021. 

[8] Ramot, D., Milo, R., Friedman, M., & Kandel, 

A. (2002). Complex fuzzy sets. IEEE 

Transactions on Fuzzy Systems, 10(2), 171-

186. 

[9] Mahmood, T., Ur Rehman, U., Ali, Z., & 

Mahmood, T. (2020). Hybrid vector similarity 

measures based on complex hesitant fuzzy sets 

and their applications to pattern recognition and 

medical diagnosis. Journal of Intelligent & 

Fuzzy Systems, (Preprint), 1-22. 

[10] Mahmood, T., Ur Rehman, U., Ali, Z., & 

Chinram, R. (2020). Jaccard and Dice 

Similarity Measures Based on Novel Complex 

Dual Hesitant Fuzzy Sets and Their 

Applications. Mathematical Problems in 

Engineering, 2020. 

[11] Atanassov, K. T. (1994). Operators over 

interval valued intuitionistic fuzzy sets. Fuzzy 

sets and systems, 64(2), 159-174. 

[12] Gorzałczany, M. B. (1987). A method of 

inference in approximate reasoning based on 

interval-valued fuzzy sets. Fuzzy sets and 

systems, 21(1), 1-17. 

[13] Pawlak, Z., Grzymala-Busse, J., Slowinski, R., 

& Ziarko, W. (1995). Rough sets. 

Communications of the ACM, 38(11), 88-95. 

[14] Pawlak, Z. (2012). Rough sets: Theoretical 

aspects of reasoning about data (Vol. 9). 

Springer Science & Business Media. 

[15] Pawlak, Z., & Skowron, A. (2007). Rudiments 

of rough sets. Information sciences, 177(1), 3-

27. 

[16] Pawlak, Z., & Skowron, A. (2007). Rough sets: 

some extensions. Information sciences, 177(1), 

28-40. 

[17] Pawlak, Z., & Skowron, A. (2007). Rough sets 

and Boolean reasoning. Information sciences, 

177(1), 41-73. 

[18] Molodtsov, D. (1999). Soft set theory—first 

results. Computers & Mathematics with 

Applications, 37(4-5), 19-31. 

[19] Ali, M. I., Feng, F., Liu, X., Min, W. K., & 

Shabir, M. (2009). On some new operations in 

soft set theory. Computers & Mathematics with 

Applications, 57(9), 1547-1553. 

[20] Ma, X., Zhan, J., Ali, M. I., & Mehmood, N. 

(2018). A survey of decision making methods 

based on two classes of hybrid soft set models. 

Artificial Intelligence Review, 49(4), 511-529. 

[21] Herawan, T., Rose, A. N. M., & Deris, M. M. 

(2009, December). Soft set theoretic approach 

for dimensionality reduction. In International 

Conference on Database Theory and 

Application (pp. 171-178). Springer, Berlin, 

Heidelberg. 

[22] Sun, B., Ma, W., & Li, X. (2017). Linguistic 

value soft set-based approach to multiple 

criteria group decision-making. Applied Soft 

Computing, 58, 285-296. 

[23] Min, W. K. (2012). Similarity in soft set theory. 

Applied Mathematics Letters, 25(3), 310-314. 

[24] ALSHAMI, T., & EL-SHAFEI, M. O. H. A. M. 

M. E. D. (2020). $ T $-soft equality relation. 

Turkish Journal of Mathematics, 44(4), 1427-

1441. 

[25] Manna, S., Basu, T. M., & Mondal, S. K. 

(2020). A soft set based VIKOR approach for 

some decision-making problems under 

complex neutrosophic environment. 

Engineering Applications of Artificial 

Intelligence, 89, 103432. 

[26] Zulqarnain, R. M., Abdal, S., Maalik, A., Ali, 

B., Zafar, Z., Ahamad, M. I., ... & Dayan, F. 

(2020). Application of TOPSIS method in 

decision making via soft set. Biomed J Sci Tech 

Res, 24(3). 

[27] Vijayabalaji, S., & Ramesh, A. (2019). Belief 

interval-valued soft set. Expert Systems with 

Applications, 119, 262-27 

[28] Roy, A. R., & Maji, P. K. (2007). A fuzzy soft 

set theoretic approach to decision making 

problems. Journal of computational and 

Applied Mathematics, 203(2), 412-418. 

[29] Maji, P. K., Biswas, R., & Roy, A. R. (2001). 

Intuitionistic fuzzy soft sets. Journal of fuzzy 

mathematics, 9(3), 677-692. 

[30] Thirunavukarasu, P., Suresh, R., & 

Ashokkumar, V. (2017). Theory of complex 

fuzzy soft set and its applications. International 

Journal for Innovative Research in Science & 

Technology, 3(10), 13-18. 

[31] Kumar, T., & Bajaj, R. K. (2014). On complex 

intuitionistic fuzzy soft sets with distance 

measures and entropies. Journal of 

Mathematics, 2014. 

[32] Ma, X., Liu, Q., & Zhan, J. (2017). A survey of 

decision making methods based on certain 

hybrid soft set models. Artificial Intelligence 

Review, 47(4), 507-530. 

[33] Zou, Y., & Xiao, Z. (2008). Data analysis 

approaches of soft sets under incomplete 

information. Knowledge-Based Systems, 

21(8), 941-945. 



Technical Journal, University of Engineering and Technology (UET) Taxila, Pakistan           Vol. 27 No. 1-2022 

ISSN:1813-1786 (Print) 2313-7770 (Online) 

117 

[34] Alcantud, J. C. R., & Laruelle, A. (2014). 

Dis&approval voting: a characterization. Social 

Choice and Welfare, 43(1), 1-10. 

[35] Herawan, T., & Deris, M. M. (2009, 

September). On multi-soft sets construction in 

information systems. In International 

Conference on Intelligent Computing (pp. 101-

110). Springer, Berlin, Heidelberg. 

[36] Fatimah, F., Rosadi, D., Hakim, R. F., & 

Alcantud, J. C. R. (2018). N-soft sets and their 

decision making algorithms. Soft Computing, 

22(12), 3829-3842. 

[37] Alcantud, J. C. R., Feng, F., & Yager, R. R. 

(2019). An $ N $-soft set approach to rough 

sets. IEEE Transactions on Fuzzy Systems, 

28(11), 2996-3007. 

[38] Riaz, M., Çağman, N., Zareef, I., & Aslam, M. 

(2019). N-soft topology and its applications to 

multi-criteria group decision making. Journal 

of Intelligent & Fuzzy Systems, 36(6), 6521-

6536. 

[39] Akram, M., Adeel, A., & Alcantud, J. C. R. 

(2018). Fuzzy N-soft sets: A novel model with 

applications. Journal of Intelligent & Fuzzy 

Systems, 35(4), 4757-4771. 

[40] Fatimah, F., & Alcantud, J. C. R. (2021).  The 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 multi-fuzzy N-soft set and its applications to 

decision-making. Neural Computing and 

Applications, 33(17), 11437-11446. 

[41] Akram, M., Ali, G., & Alcantud, J. C. R. 

(2019). New decision-making hybrid model: 

intuitionistic fuzzy N-soft rough sets. Soft 

Computing, 23(20), 9853-9868. 

[42] Mahmood, T. Ur Rehman U., & Ali, Z. (2021). 

A novel complex fuzzy N-soft sets and their 

decision-making algorithm. Complex & 

Intelligent Systems, 7(5), 2255-2280. 

[43] Alkouri, A. M. D. J. S., & Salleh, A. R. (2012, 

September). Complex intuitionistic fuzzy sets. 

In AIP Conference Proceedings (Vol. 1482, No. 

1, pp. 464-470). American Institute of Physics. 

[44] Hussain, A., Ullah, K., Wang, H., & Bari, M. 

(2022). Assessment of the Business Proposals 

Using Frank Aggregation Operators Based on 

Interval-Valued T-Spherical Fuzzy 

Information. Journal of Function Spaces, 2022. 

[45] Mahmood, T., & Ur Rehman, U. (2022). A 

novel approach towards bipolar complex fuzzy 

sets and their applications in generalized 

similarity measures. International Journal of 

Intelligent Systems, 37(1), 535-567. 


