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Abstract-  Parallel kinematic manipulators have a 

well advantage over the serial manipulators as a 

result of their increased stiffness and load carrying 

capacity. This advantage has increased parallel 

mechanisms' use in a variety of applications. This 

article discusses the stiffness analysis of prismatic 

revolute and spherical (3-PRS) parallel mechanisms 

in detail. A simple and comprehensive approach is 

presented to estimate stiffness model of 3-PRS 

mechanism. 

3PRS manipulator has three identical limbs with 

each limb has prismatic revolute and spherical joint.  

The proposed 3-PRS mechanism's CAD model is 

created using Autodesk® inventor professional 

software. Forward and inverse kinematic model are 

available.   Stiffness models are made analytically as 

well as the CAD model and analysed using FEA 

analysis. Analytically and FEA analysis of the CAD 

model are compared. The results are very close to 

CAD model, thereby supporting the validity of the 

presented approach. 

 

Keywords- Kinematics, Prismatic Revolute 

Spherical, Parallel manipulators, CAD model, 

Stiffness model 

 

NOMENCLATURE 

 

CNC Computerized Numerical Control 

SPS Spherical Prismatic Spherical  

RRR Revolute Revolute Revolute  

RPS Revolute Prismatic Spherical  

PSP Prismatic Spherical Prismatic  

CAD Computer Aided Design 

FEA Finite Element Analysis 

PKM Parallel Kinematic Manipulator 

PRS Prismatic Revolute Spherical  

PRPR Prismatic Revolute Prismatic 

Revolute 

PUU Prismatic Universal Universal  

UPU Universal Prismatic universal 

 

I. INTRODUCTION 

 

 Robots play an important role in 

manufacturing, especially for automation with 

improved quality products in industry. Now a day 

the robots are flexible and can be capable to produce 

different verity of products. They are faster, accurate 

and reliable. Robots are preferred due to their low 

manufacturing cost and accuracy. Robots have many 

applications in industry like automobile industry 

that is totally automated production lines or a 

machine tool manufacturing industry with CNC 

machines. Other applications include automated 

production system in pharmaceutical industry, 

process industry, packing industry and so on. The 

increase dependence of industrial work on robots is 

due to its cheaper manufacturing cost, more efficient 

and accurate work. 

Recently, Sun examined the global performance 

index of the 3-PRS parallel mechanism in terms of 

linear velocity, acceleration, angular velocity, and 

angular acceleration using the Jacobean matrix and 

second order influence coefficient matrix. [1].  

Historically, Parallel manipulator firstly introduced 

by Gough and Whitehall [2] for universal tire testing 

machine, in which they used 6 universal jacks in 

parallel arrangement sand introduce a new trend in 

the field of parallel manipulators. Stewart was then 

introduced the platform for airplane simulator [3]. 

Kinematic study of parallel manipulator was 1st 

introduced by Hunt [4]. Different researcher studied 

parallel mechanism in different ways [5], up to now 

almost 100 of different kinematic configuration of 

parallel manipulators are proposed. Parallel 

manipulators classified in two main branches, 

planner and spatial manipulator. Planner parallel 

manipulator has also studied for kinematic position 

analysis by Gosselin & Angeles [6]. They 

introduced a 3-RRR (revolute revolute revolute) 

configuration in planner manipulator. Detail 

position analysis of planner manipulator is found in 

[5]. 6-DOF (degree of freedom) spatial parallel 

manipulator is mostly studied to date which consists 

of six actuators. Kinematic Analysis of most 

commonly 6-DOF Stewart Gough mechanism with 

SPS limb configuration is found in [6]. 

Tripod based 3DOF parallel manipulator were 

studied by many researchers for their kinematic 

performance and workspace volume. A general 

3RPS parallel manipulator was studied by Lee and 

Shah [8], for kinematic analysis. Up to now tripod 
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parallel manipulators are developed for many 

configurations like, PRS (prismatic revolute 

spherical), SPS (spherical, prismatic, spherical), 

RPS (revolute, prismatic, spherical), etc. Carretero, 

et al. [9] introduced 3PRS manipulator with each 

limb have prismatic revolute and spherical 

arrangements, the inverse position model was 

derived and addressed the issues with the parasitic 

motions and optimization of the architecture for 

parasitic motion minimization. In Carretero et al. 

model three actuators lies on the same plane with 

zero inclination angles γ. Tsai, et al. [10] introduce 

a new architecture design for 3PRS mechanism, in 

which three actuators are parallel to each other and 

have the inclination angle γ is equal to 90o. Forward 

kinematics of that model was solved. A new 

architecture with the actuator line of action intersect 

at common point at angle γ, inverse kinematics of 

this type of manipulator is solved and a square 

Jacobean is derived by the screw theory, both 

dexterous and reachable workspace is analysed at 

different inclination angle [11].  S. Ramana Bab, 

et.al, formulate a multi-objective optimization 

problem considering the performance indices are as 

the objective functions. Three performance criteria-

-Global conditioning index (GCI), Global stiffness 

index (GSI) and workspace volume-were 

formulated and the effect of actuator layout angle on 

the performance indices was studied. A multi-

objective evolutionary algorithm based on the 

Control elitist non-dominated sorting genetic 

algorithm (CENSGA) was adopted to find the final 

approximation set [12]. Antonio Ruiz e. al. made the 

mechatronic model of a compliant 3PRS parallel 

manipulator is developed, integrating the inverse 

and direct kinematics, the inverse dynamic problem 

of the manipulator and the dynamics of the actuators 

and its control. The kinematic problem is solved, 

assuming a pseudo-rigid model for the deflection in 

the compliant revolute and spherical joints. The 

inverse dynamic problem is solved, using the 

Principle of Energy Equivalence [13].  Mervin Joe 

Thomas made the kinematic and dynamic analysis 

of a novel 3-PRUS (P: prismatic joint, R: revolute 

joint, U: universal joint, S: spherical joint) parallel 

manipulator with a mobile platform having 6 Degree 

of Freedom (DoF). The kinematic equations for the 

proposed spatial parallel mechanism were 

formulated using the Modified Denavit-Hartenberg 

(DH) technique considering both active and passive 

joints. A Jacobian based stiffness analysis is done to 

understand the variations in stiffness for different 

poses of the mobile platform and further, it is used 

to decide trajectories for the end effector within the 

singularity free region [14]. 

 

 

 

 

 

II. MATERIAL AND METHODS 

 

A. Mechanism Description 

Fig 1 depicts the 3PRS manipulator's CAD model. 

The mechanism is composed of a fixed base, a 

moving platform, and a structure. Three kinematic 

chains connect the moving platform to the fixed base. 

Each limb is comprised of a series of Prismatic, 

Revolute, and Spherical Joints. Three actuators at 

each link operate the prismatic joint. Three identical 

prismatic, revolute, and spherical linkages form the 

total kinematic structure. Three degrees of freedom 

are available in the 3-PRS mechanism; one is 

vertical translation and the other two are rotations 

about two axes in the horizontal plane. 

The vector representation of the 3-PRS mechanisms 

are shown in Fig 2. The fixed based triangle 

∆𝐴1𝐴2𝐴3 has the center point 𝑂at which a Cartesian 

reference frame 𝑂{𝑥 𝑦 𝑧} is attached. Point  𝑃 is 

attached to the center of moving platform with the 

coordinate frame 𝑃{𝑢 𝑣 𝑤} and the moving platform 

triangle ∆𝐵1𝐵2𝐵3.vector𝑂𝐴1is in the direction of x-

axis and the vector OB1is in the direction of u-axis. 

 

 
Fig..1 The CAD model of the 3PRS manipulator 

 
 

Fig.2 Vector representation of the 3-PRS mechanism 
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B. Manipulator Geometry  

From the geometry of the 3-PRS manipulator three 

linear actuators for 𝑖 = 1 𝑡𝑜 3 𝐴𝑖𝑁  intersect at 

common point  𝑁 . Point 𝐴𝑖  lies on a circle with 

radius 𝑎.other parameters are listed below. 

𝑎 is the fixed base platform radius  𝑏 is the moving 

platform radius  𝑙 is the fixed length of each leg 

𝛼 is the actuator layout angle  𝛽  is the ∠ 𝑂𝐴1  to 

 𝑂𝐴2 and ∠ 𝑂𝐵1to  𝑂𝐵2   

𝑝 is the position vector {𝑝𝑥𝑝𝑦𝑝𝑧}
𝑇
from 𝑂 to 𝑃  𝛾 is 

the ∠ 𝑂𝐴1 to  𝑂𝐴3 and ∠ 𝑂𝐵1to  𝑂𝐵3 

𝜑 is the angle between fixed based and fixed leg 

length 𝐶𝑖𝐵𝑖   𝑞𝑖 is the vector from 𝑂 to 𝐵𝑖  

𝐿𝑖  is the vector from 𝐴𝑖 to 𝐵𝑖   𝑑 is the set of actuated 

joint variables ={𝑑1𝑑2𝑑3}
𝑇 

𝜙,𝜓 & 𝜃 are the Euler Angles  X  is the set of 

Cartesian variables = {𝑝𝑥𝑝𝑦𝑝𝑧  𝜙  𝜓 𝜃}
𝑇
 

𝑢, 𝑣 & 𝑤 are the unit vectors of moving platform  

𝑥, 𝑦 & 𝑧 are the unit vectors of fixed base  

The rotation matrix from 𝑂  to 𝑃  in terms of 

direction cosines can be written as 

𝑅𝐵 = 𝑅1
𝑂

𝑃  =  [

𝑢𝑥 𝑣𝑥 𝑤𝑥

𝑢𝑦 𝑣𝑦 𝑤𝑦

𝑢𝑧 𝑣𝑧 𝑤𝑧

]𝑎
𝐴         (1) 

𝑅𝑠
𝑂

𝑃 = 𝑅𝑦(𝜃)𝑅𝑥(𝜓)𝑅𝑧(𝜙)  =

[

𝑐𝜃𝑐𝜙 + 𝑠𝜓𝑠𝜃𝑠𝜙 −𝑐𝜃𝑠𝜙 + 𝑠𝜓𝑠𝜃𝑐𝜙 𝑐𝜓𝑐𝜃
𝑐𝜓𝑠𝜙 𝑐𝜓𝑐𝜙 −𝑠𝜓

−𝑠𝜃𝑐𝜙 + 𝑠𝜓𝑐𝜃𝑠𝜙 𝑠𝜃𝑠𝜙 + 𝑠𝜓𝑐𝜃𝑐𝜙 𝑐𝜓𝑐𝜃
]     (2) 

 

Where 𝑐 represents the cosine and 𝑠 represents the 

sine trigonometric functions. The total 

transformation from the moving platform to the 

fixed base is composition of rotation matrix  𝑅2
𝑂

𝑃  

and the position vector 𝑝 = {𝑝𝑥  𝑝𝑦 𝑝𝑧}
𝑇
.  From the 

Fig.2 the position vectors from frame 𝑂 to point 𝐴𝑖 

and frame 𝑃 to point 𝐵𝑖  can be describe by notation  

𝑎𝑖𝑤
𝑂  and  𝑏𝑖𝑤

𝑃  , respectively. The leading superscript 

can be omitted in case of the fixed frame 𝑂e.g 𝑎𝑖𝑠
𝑂 =

𝑎𝑖.for 𝑖 = 1 𝑡𝑜 3 these vectors can be written as. 

 

𝑎1 = [𝑎 0 0]𝑇𝑎2 = [−𝑎 2⁄ √3𝑎 2⁄   0]
𝑇
𝑎3

= [−𝑎 2⁄  − √3𝑎 2⁄   0]
𝑇
 

𝑏1 = [𝑏 0 0]𝑇𝑠
𝑃 𝑏2 = [𝑏 2⁄ −√3𝑏 2⁄  0]

𝑇

𝑠
𝑃  

𝑏1 = [𝑏 0 0]𝑇𝑠
𝑃 𝑏2 = [𝑏 2⁄ −√3𝑏 2⁄  0]

𝑇
 𝑠

𝑃  

𝑏3  = [− 𝑏 2⁄ −√3𝑏 2⁄  0]
𝑇

𝑠
𝑃                (3) 

From Fig.2 the vector loop equation 

𝑞𝑖 = 𝑝 + 𝑏𝑖   Where 𝑏𝑖 = 𝑅𝑝 𝑏𝑖𝑠
𝑃

𝑠
𝑂   

From Eq-(1) (2) & (3) and by simplifying Eq-(4) is 

obtained. 

 

𝑞1 = [

𝑝𝑥 +  𝑏 𝑢𝑥

𝑝𝑦 +  𝑏 𝑢𝑦

𝑝𝑧 +  𝑏 𝑢𝑧

] 

  𝑞2 = [

𝑝𝑥 − 𝑏𝑢𝑥 2 + √3𝑏𝑣𝑥 2⁄⁄

𝑝𝑦 − 𝑏𝑢𝑦 2 + √3𝑏𝑣𝑦 2⁄⁄

𝑝𝑧 − 𝑏𝑢𝑧 2 + √3𝑏𝑣𝑧 2⁄⁄

] 

 𝑞3 = [

𝑝𝑥 − 𝑏𝑢𝑥 2 − √3𝑏𝑣𝑥 2⁄⁄

𝑝𝑦 − 𝑏𝑢𝑦 2 − √3𝑏𝑣𝑦 2⁄⁄

𝑝𝑧 − 𝑏𝑢𝑧 2 − √3𝑏𝑣𝑧 2⁄⁄

] 

                    (4) 

The mechanical constraints imposed by the 

revolute joint in which the spherical joint 𝑆 can only 

be move in plane defined by their linear actuator and 

the fixed leg lengths. Hence 

. 
𝑞𝑖𝑦

𝑞𝑖𝑥
= tan(∗)                  (5) 

Where for 𝑖 = 1 𝑡𝑜 3 ∗= 0, 𝛽  and 𝛾  respectively.  

From Eq. (5) for 𝑖 = 1 𝑡𝑜 3, we get following three 

equations. 

𝑞1𝑦 = 0                     (6) 

𝑞2𝑦 = −√3𝑞2𝑥           (7) 

𝑞3𝑦 = √3𝑞3𝑥                  (8) 

Substituting the elements of 𝑞𝑖 from Eq. (4) into Eq. 

(6), (7) and (8), yields the following equations. 

𝑝𝑦 +  𝑏 𝑢𝑦 = 0                    (9) 

𝑝𝑦 − 𝑏𝑢𝑦 2 + √3𝑏𝑣𝑦 2⁄⁄ = −√3(𝑝𝑥 −

𝑏𝑢𝑥 2 + √3𝑏𝑣𝑥 2⁄⁄ )               (10) 

𝑝𝑦 − 𝑏𝑢𝑦 2 + √3𝑏𝑣𝑦 2⁄⁄ = √3(𝑝𝑥 −

𝑏𝑢𝑥 2 + √3𝑏𝑣𝑥 2⁄⁄ )               (11) 

 

By simplifying Eq.-(9),(10) & (11)  we get 

 

𝑣𝑥 = 𝑢𝑦                  (12) 

 

After subtracting Eq. (10) from Eq. (11). 

𝑝𝑥 =
𝑏

2
(𝑢𝑥 − 𝑣𝑦)                (13) 

 

Hence, motion of the moving platform is constraints 

by three equations (9), (12) and (13). 

 

C. Stiffness Analysis 

In many applications, the moving platform of a 

parallel manipulator is in contact with a stiff 

environment, and applies force to the environment. 

As the Jacobean transpose is a projection map 

between the applied force to the environment and 

the actuator forces causing this moment. The focus 

is on the deflections of the manipulator’s moving 

platform that are the result of the applied moment to 

the environment.  In parallel manipulators, stiffness 

is an important performance parameter spatially in 

high-speed machine tool application for higher 

accuracy. When the end effector moves to perform a 

specific task, it exerts some force and/or moment, 

which cause the end effector deflection form desired 

location.  This deflection is a function of the 

stiffness and the applied force; thus, the stiffness has 

a direct effect on the manipulator's positional 

accuracy. There are many factors that affect the 
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stiffness e.g. material and size of the manipulator 

links, actuators and the mechanical transmission 

system. The most important factor is the structure of 

the manipulator. Using closed-kinematic chains in 

the structure of the robot contributes significantly to 

higher stiffness and better positioning accuracy.  

The links are assumed to be perfectly rigid in this 

case. The stiffness of the parallel manipulator can be 

described by the stiffness matrix. The stiffness 

matrix represents the relationship between the forces 

and torques applied to the end effector in Cartesian 

space and the corresponding Cartesian linear and 

angular displacements.  

Let 𝜏 = [𝜏1, 𝜏2, … . . , 𝜏𝑛]𝑇  is the vector of actuators 

joint torque or force and the joint deflection ∆𝑞 =
[∆𝑞1, ∆𝑞2, … . . , ∆𝑞𝑛]𝑇 .𝜏 and  ∆𝑞  can be related by 

𝑛 × 𝑛  diagonal matrix. Let 𝜒 = diag[𝑘1, 𝑘2 … . 𝑘𝑛] 
so the relation will become as. 

 

𝜏 = 𝜒∆𝑞                  (14) 

 

The joint deflection ∆𝑞 is related to end effector 

deflection ∆x by the Jacobean matrix. 

 

∆𝑞 = 𝐽 ∆x                (15) 

Where  ∆x = [∆𝑝𝑥, ∆𝑝𝑦, ∆𝑝𝑧, ∆𝜙, ∆𝜓, ∆𝜃]
𝑇

 

 

𝐹 = [𝑓, 𝑛]𝑇 is the vector of output force and 

moment, which is related to the joint torque𝜏  by 

jacobian matrix as.  

𝐹 = 𝐽𝑇𝜏                 (16) 

 

Putting the ∆𝑞 from Eq. (15). into Eq.(14) and the 

resulting equation is  

𝐹 = 𝐽𝑇𝜒 𝐽 ∆x                (17) 

 

Here 𝐾 = 𝐽𝑇𝜒 𝐽 and it is called the stiffness matrix 

for the parallel manipulator.  However, the stiffness 

matrix is symmetric positive semi-definite, and it 

depends upon the manipulator configuration. When 

all the actuators are the same type, the stiffness 

constant will also be same as 𝑘 = 𝑘1 = 𝑘2 = ⋯ 𝑘𝑛 

then Eq.(17)will be reduced to the form. 

𝐾 = 𝑘 𝐽𝑇 𝐽.                (18) 

 

D. Analytical Stiffness Model 

The analytical model for the 3 PRS parallel 

kinematic manipulator is obtained by combining the 

unit vectors of the fixed base, actuators, fixed leg, 

and moving platform into the final Jacobean matrix. 

J=Ja x Jr Into final Jacobean matrix 𝐽 = 𝐽𝑎𝐽𝑟 .  

Where 𝐽𝑎 = 𝐽𝑞
−1𝐽𝑥 and 𝐽𝑟 =

[
 
 
 
 
 
 
 

𝜕𝑃𝑥

𝜕𝑃𝑧

𝜕𝑃𝑥

𝜕𝜓

𝜕𝑃𝑥

𝜕𝜃

𝜕𝑃𝑦

𝜕𝑃𝑧

𝜕𝑃𝑦

𝜕𝜓

𝜕𝑃𝑦

𝜕𝜃

1 0 0
0 1 0
0 0 1

𝜕𝑃𝜙

𝜕𝑃𝑧

𝜕𝑃𝜙

𝜕𝜓

𝜕𝑃𝜙

𝜕𝜃 ]
 
 
 
 
 
 
 

    (19) 

To find the Jacobean matrix Ja we need to put unit 

vector of Jx & 𝐽𝑞    𝐽𝑥 = [

𝐼10 (𝑏1 × 𝐼10)
𝑇

𝐼20 (𝑏2 × 𝐼20)
𝑇

𝐼30 (𝑏3 × 𝐼30)
𝑇

]

  3×6

 

𝐼𝑖0 =
𝐿𝑖−𝑑𝑖𝑑𝑖0

𝑙
                (20) 

𝐿𝑖 = 𝑞𝑖 − 𝑎𝑖                 (21) 

𝑞1 = [

3

2
 𝑏 𝑢𝑥 − 𝑏𝑣𝑦

0
𝑝𝑧 +  𝑏 𝑢𝑧

]  

𝑞2 = [

−𝑏𝑣𝑦 2 + √3𝑏𝑣𝑥 2⁄⁄

−3𝑏𝑢𝑦 2 + √3𝑏𝑣𝑦 2⁄⁄

𝑝𝑧 − 𝑏𝑢𝑧 2 + √3𝑏𝑣𝑧 2⁄⁄

] 

𝑞3 = [

−𝑏𝑣𝑦 2 − √3𝑏𝑣𝑥 2⁄⁄

−3𝑏𝑢𝑦 2 − √3𝑏𝑣𝑦 2⁄⁄

𝑝𝑧 − 𝑏𝑢𝑧 2 − √3𝑏𝑣𝑧 2⁄⁄

]               (22) 

 

Values of 𝐿𝑖are found using Eq.(21) 

𝐿1 = [

3

2
 𝑏 𝑢𝑥 − 𝑏𝑣𝑦 − 𝑎

0
𝑝𝑧 +  𝑏 𝑢𝑧

]  

𝐿2 = [

−𝑏𝑣𝑦 2 + √3𝑏𝑣𝑥 2⁄⁄ +𝑎 2⁄

−3𝑏𝑢𝑦 2 + √3𝑏𝑣𝑦 2⁄⁄ − √3𝑎 2⁄

𝑝𝑧 − 𝑏𝑢𝑧 2 + √3𝑏𝑣𝑧 2⁄⁄

]  

𝐿3 = [

−𝑏𝑣𝑦 2 − √3𝑏𝑣𝑥 2⁄⁄ +𝑎 2⁄

−3𝑏𝑢𝑦 2 − √3𝑏𝑣𝑦 2⁄⁄ + √3𝑎 2⁄

𝑝𝑧 − 𝑏𝑢𝑧 2 − √3𝑏𝑣𝑧 2⁄⁄

]    (23) 

 

Unit vector 𝐼𝑖0can be obtained from Eq.(20) 

 

𝐼𝑖0 =
𝐿𝑖 − 𝑑𝑖𝑑𝑖0

𝑙
 

𝐼10 = [

2𝑑1𝑐𝛼+3 𝑏𝑢𝑥−𝑏𝑣𝑦−2𝑎

2𝑙

0
𝑑1𝑠𝛼+𝑝𝑧+ 𝑏 𝑢𝑧

𝑙

]                   (24) 

𝐼20 =

[
 
 
 
 

−𝑑2𝑐𝛼+√3𝑏𝑣𝑥−𝑏𝑣𝑦+𝑎

2𝑙

𝑑2√3𝑐𝛼−3𝑏𝑢𝑦+√3𝑏𝑣𝑦−√3𝑎

2𝑙

2𝑑2𝑠𝛼+2𝑝𝑧− 𝑏 𝑢𝑧+√3𝑏𝑣𝑧

2𝑙 ]
 
 
 
 

              (25) 

𝐼30 =

[
 
 
 
 

−𝑑3𝑐𝛼−√3𝑏𝑣𝑥−𝑏𝑣𝑦+𝑎

2𝑙

−𝑑3√3𝑐𝛼−3𝑏𝑢𝑦−√3𝑏𝑣𝑦+√3𝑎

2𝑙

2𝑑3𝑠𝛼+2𝑝𝑧− 𝑏 𝑢𝑧−√3𝑏𝑣𝑧

2𝑙 ]
 
 
 
 

                  (26) 

From section of analytical model the Jacobean can 

be found 

𝐽𝑥 = [

𝐼10 (𝑏1 × 𝐼10)
𝑇

𝐼20 (𝑏2 × 𝐼20)
𝑇

𝐼30 (𝑏3 × 𝐼30)
𝑇

]

  3×6

  

The unit vectors are 
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𝑏1 = [

𝑏𝑢𝑥

𝑏𝑢𝑦

𝑏𝑢𝑧

]  

𝑏2 = [

−𝑏𝑢𝑥 2 + √3𝑏𝑣𝑥 2⁄⁄

−𝑏𝑢𝑦 2 + √3𝑏𝑣𝑦 2⁄⁄

−𝑏𝑢𝑧 2 + √3𝑏𝑣𝑧 2⁄⁄

] 

𝑏3 = [

−𝑏𝑢𝑥 2 − √3𝑏𝑣𝑥 2⁄⁄

−𝑏𝑢𝑦 2 − √3𝑏𝑣𝑦 2⁄⁄

−𝑏𝑢𝑧 2 − √3𝑏𝑣𝑧 2⁄⁄

]            (27) 

Taking cross product of 𝑏1, 𝑏2  and 𝑏3  of  Eq.(26) 

with Eq. (24), (25) and (26). 

Finally, a 3 x 6 Jacobean matrix is obtained.   

 

𝐽𝑎 = [

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

𝑎14 𝑎15 𝑎16

𝑎24 𝑎25 𝑎26

𝑎34 𝑎35 𝑎36

]           (28) 

 

Where, 

𝑎11 = −
2𝑑1𝑐𝛼+3𝑏 𝑢𝑥−𝑏 𝑣𝑦−2𝑎

2𝑑1+2𝑠𝛼 𝑏 𝑢𝑧+3𝑐𝛼 𝑏 𝑢𝑥−𝑐𝛼 𝑏 𝑣𝑦+2𝑠𝛼 𝑝𝑧−2𝑎 𝑐𝛼 
  

 𝑎12 = 0  

 

𝑎13 = −
2(𝑑1𝑠𝛼+𝑏 𝑢𝑧+𝑝𝑧)

2𝑑1+2𝑠𝛼 𝑏 𝑢𝑧+3𝑐𝛼 𝑏 𝑢𝑥−𝑐𝛼 𝑏 𝑣𝑦+2𝑠𝛼 𝑝𝑧−2𝑎 𝑐𝛼 
  

 𝑎14 = −
2𝑏 𝑢𝑦(𝑑1𝑠𝛼+𝑏 𝑢𝑧+𝑝𝑧)

2𝑑1+2𝑠𝛼 𝑏 𝑢𝑧+3𝑐𝛼 𝑏 𝑢𝑥−𝑐𝛼 𝑏 𝑣𝑦+2𝑠𝛼 𝑝𝑧−2𝑎 𝑐𝛼 
 

 

𝑎15 =
𝑏(2𝑠𝛼 𝑑1𝑢𝑥−2𝑐𝛼 𝑑1𝑢𝑧−𝑏𝑢𝑥𝑢𝑧+𝑏𝑢𝑧𝑣𝑦+2𝑎 𝑢𝑧+2𝑝𝑧𝑢𝑥)

2𝑑1+2𝑠𝛼 𝑏 𝑢𝑧+3𝑐𝛼 𝑏 𝑢𝑥−𝑐𝛼 𝑏 𝑣𝑦+2𝑠𝛼 𝑝𝑧−2𝑎 𝑐𝛼 
  

𝑎16 =
𝑏 𝑢𝑦(2𝑑1𝑐𝛼+3𝑏 𝑢𝑥−𝑏 𝑣𝑦−2𝑎)

2𝑑1+2𝑠𝛼 𝑏 𝑢𝑧+3𝑐𝛼 𝑏 𝑢𝑥−𝑐𝛼 𝑏 𝑣𝑦+2𝑠𝛼 𝑝𝑧−2𝑎 𝑐𝛼 
 

 
𝑎21 =

2(−√3𝑏 𝑣𝑥+𝑑2𝑐𝛼+𝑏 𝑣𝑦−𝑎)

4𝑑2+4𝑐𝛼 𝑏 𝑣𝑦−4𝑎 𝑐𝛼−3𝑐𝛼 √3𝑏 𝑏𝑢𝑦−𝑐𝛼 √3𝑏 𝑣𝑥+2𝑠𝛼 √3𝑏 𝑣𝑧−2𝑠𝛼 𝑏 𝑢𝑧+4𝑠𝛼 𝑝𝑧
  

𝑎22 =
2(𝑑2√3𝑐𝛼+√3𝑏 𝑣𝑦−√3𝑎−3𝑏 𝑢𝑦)

4𝑑2+4𝑐𝛼 𝑏 𝑣𝑦−4𝑎 𝑐𝛼−3𝑐𝛼 √3𝑏 𝑏𝑢𝑦−𝑐𝛼 √3𝑏 𝑣𝑥+2𝑠𝛼 √3𝑏 𝑣𝑧−2𝑠𝛼 𝑏 𝑢𝑧+4𝑠𝛼 𝑝𝑧
  

𝑎23 =
2(√3𝑏 𝑣𝑧+2𝑑2𝑠𝛼−𝑏𝑢𝑧+2𝑝𝑧)

4𝑑2+4𝑐𝛼 𝑏 𝑣𝑦−4𝑎 𝑐𝛼−3𝑐𝛼 √3𝑏 𝑏𝑢𝑦−𝑐𝛼 √3𝑏 𝑣𝑥+2𝑠𝛼 √3𝑏 𝑣𝑧−2𝑠𝛼 𝑏 𝑢𝑧+4𝑠𝛼 𝑝𝑧
  

𝑎24 = −
𝑥1 + 𝑥2

𝑦1 + 𝑦2

 

𝑥1 =  𝑏(2𝑠𝛼√3𝑑2𝑣𝑦 + 2√3𝑏 𝑢𝑦𝑣𝑧 − 2𝑠𝛼𝑑2𝑢𝑦

+ 2√3𝑝𝑧𝑣𝑦 − 2𝑏𝑢𝑦𝑢𝑧 

𝑥2 = 2𝑝𝑧𝑢𝑦 − 3𝑐𝛼𝑑2𝑣𝑧 + 𝑐𝛼√3𝑑2𝑢𝑧 + 3𝑎 𝑣𝑧

− √3𝑎 𝑢𝑧 

𝑦1 = 4𝑑2 + 4𝑐𝛼 𝑏 𝑣𝑦 − 4𝑎 𝑐𝛼 − 3𝑐𝛼 √3𝑏 𝑏𝑢𝑦 

𝑦2 =  𝑐𝛼 √3𝑏 𝑣𝑥 + 2𝑠𝛼 √3𝑏 𝑣𝑧 − 2𝑠𝛼 𝑏 𝑢𝑧 +
4𝑠𝛼 𝑝𝑧 

𝑎25 =
𝑏(𝑥3 + 𝑥4)

𝑦1 + 𝑦2

 

𝑥3 = 2𝑠𝛼√3𝑑2𝑣𝑥 − √3𝑏𝑢𝑥𝑣𝑧 − 2𝑠𝛼𝑑2𝑢𝑥

+ 2√3𝑝𝑧𝑣𝑥 + 𝑏𝑢𝑥𝑢𝑧 − 2𝑝𝑧𝑢𝑥 

𝑥4 =  𝑐𝛼√3𝑑2𝑣𝑧 + √3𝑏𝑣𝑦𝑣𝑧 − 𝑐𝛼𝑑2𝑢𝑧 − √3𝑎𝑣𝑧

− 𝑏𝑢𝑧𝑣𝑦 + 𝑎𝑢𝑧 

𝑎26 =
𝑏(𝑥5 − 𝑥6)

𝑦1 + 𝑦2

 

𝑥5 =  𝑐𝛼√3𝑑2𝑢𝑥 − 𝑐𝛼√3𝑑2𝑣𝑦 + √3𝑏𝑢𝑥𝑣𝑦

+ 2√3𝑏𝑢𝑦𝑣𝑥 − √3𝑏𝑣𝑦
2

+ 𝑐𝛼𝑑2𝑢𝑦 

𝑥6 = 3𝑐𝛼𝑑2𝑣𝑥 − √3𝑎𝑢𝑥 + √3𝑎𝑣𝑦 − 3𝑏𝑢𝑥𝑢𝑦

+ 𝑏𝑢𝑦𝑣𝑦 − 𝑎𝑢𝑦 + 3𝑎𝑣𝑥 

𝑎31 =
𝑥7

𝑦1 + 𝑦2

 

𝑥7 = 2(√3𝑏𝑣𝑥 + 𝑑3𝑐𝛼 + 𝑏𝑣𝑦 − 𝑎 

𝑎32 =
𝑥8

𝑦1 + 𝑦2

 

𝑥8 = 2(𝑑3√3𝑐𝛼 + √3𝑏 𝑣𝑦 − √3𝑎 + 3𝑏 𝑢𝑦 

𝑎33 =
𝑥8

𝑦1 + 𝑦2

 

𝑥9 = 2(2𝑑3𝑠𝛼 − √3𝑏𝑣𝑧 − 𝑏𝑢𝑧 + 2𝑝𝑧) 

𝑎34 =
−𝑏(𝑥10 + 𝑥11)

𝑦1 + 𝑦2

 

𝑥10 = 2𝑠𝛼√3𝑑3𝑣𝑦 + 2√3𝑏𝑢𝑦𝑣𝑧 + 2𝑠𝛼𝑑3𝑢𝑦

+ 2√3𝑝𝑧𝑣𝑦 + 2𝑏𝑢𝑦𝑢𝑧 

𝑥11 = 2𝑝𝑧𝑢𝑦 + 3𝑐𝛼𝑑3𝑣𝑧 + 𝑐𝛼√3𝑑3𝑢𝑧 − 3𝑎𝑣𝑧

− √3𝑎𝑢𝑧 

𝑎35 =
𝑏(𝑥12 + 𝑥13)

𝑦1 + 𝑦2

 

𝑥12 = 2𝑠𝛼√3𝑑3𝑣𝑥 − √3𝑏𝑢𝑥𝑣𝑧 + 2𝑠𝛼𝑑3𝑢𝑥

+ 2√3𝑝𝑧𝑣𝑥 − 𝑏𝑢𝑥𝑢𝑧 + 2𝑝𝑧𝑢𝑥 

𝑥13 =  𝑐𝛼√3𝑑3𝑣𝑧 + √3𝑏𝑣𝑦𝑣𝑧 + 𝑐𝛼√3𝑑3𝑢𝑧

− √3𝑎𝑣𝑧 + 𝑏𝑢𝑧𝑣𝑦 − 𝑎𝑢𝑧 

𝑎36 =
−𝑏(𝑥14 + 𝑥15)

𝑦1 + 𝑦2

 

𝑥14 = 3𝑐𝛼𝑑3𝑣𝑥 + 𝑐𝛼√3𝑑3𝑢𝑥 − 𝑐𝛼√3𝑑3𝑣𝑦 − 3𝑎𝑣𝑥

+  √3𝑏𝑢𝑥𝑣𝑦 + 2√3𝑏𝑢𝑦𝑣𝑥 

𝑥15 = √3𝑏𝑣𝑦
2 − 𝑐𝛼𝑑3𝑢𝑦 − √3𝑎𝑢𝑥 + √3𝑎𝑣𝑦

+ 3𝑣𝑢𝑥𝑢𝑦 − 𝑏𝑢𝑦𝑣𝑦 + 𝑎𝑢𝑦 

To find 𝐽𝑟 the derivative from the constraints are 

𝐽𝑟 =

[
 
 
 
 
 
 
 

𝜕𝑃𝑥

𝜕𝑃𝑧

𝜕𝑃𝑥

𝜕𝜓

𝜕𝑃𝑥

𝜕𝜃

𝜕𝑃𝑦

𝜕𝑃𝑧

𝜕𝑃𝑦

𝜕𝜓

𝜕𝑃𝑦

𝜕𝜃

1 0 0
0 1 0
0 0 1

𝜕𝑃𝜙

𝜕𝑃𝑧

𝜕𝑃𝜙

𝜕𝜓

𝜕𝑃𝜙

𝜕𝜃 ]
 
 
 
 
 
 
 

6×3

      (29) 

𝜕𝑃𝑥

𝜕𝑃𝑧
= 0  

 
𝜕𝑃𝑥

𝜕𝜓
= −

(𝑠𝜓𝑏(𝑐𝜃3𝑐𝜓2+2𝑐𝜃2𝑐𝜓−2𝑐𝜃𝑐𝜓2−𝑐𝜃−4𝑐𝜓))

2(𝑐𝜓𝑐𝜃+1)2
  

 
𝜕𝑃𝑥

𝜕𝜃
= −

𝑐𝜓𝑠𝜃𝑏(𝑐𝜓2𝑐𝜃2+2𝑐𝜓𝑐𝜃−2𝑐𝜓2−1)

2(𝑐𝜓𝑐𝜃+1)2
  

𝜕𝑃𝑦

𝜕𝑃𝑧
= 0  

 
𝜕𝑃𝑦

𝜕𝜓
=

−𝑏𝑠𝜃(𝑐𝜓3𝑐𝜃+2𝑐𝜓2−1)

(𝑐𝜓𝑐𝜃+1)2
   

 
𝜕𝑃𝑦

𝜕𝜃
=

−𝑏𝑐𝜓(𝑐𝜓+𝑐𝜃𝑠𝜓)

(𝑐𝜓𝑐𝜃+1)2
  

 
𝜕𝑃𝜙

𝜕𝑃𝑧
= 0  

 
𝜕𝑃𝜙

𝜕𝜓
=

𝑠𝜃

𝑐𝜓𝑐𝜃+1
 
𝜕𝑃𝜙

𝜕𝜃
=

𝑠𝜓

𝑐𝜓𝑐𝜃+1
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Finally, the Jacobean matrix is  

𝐽 = 𝐽𝑎𝐽𝑟 = [

𝑗11 𝑗12 𝑗13

𝑗21 𝑗22 𝑗23

𝑗31 𝑗32 𝑗33

]

3×3

             (30) 

 

III. RESULTS AND DISCUSSION 

 

 The parameters used for the stiffness model 

is listed in Table-1 

 

Table -1 Architecture Parameters For 3 Prs 

Manipulator 

Parameters 

a 400mm 

b 200mm 

l 550mm 

𝜶 30o 
 

 

Stiffness Analysis Results  

The architecture parameters for 3PRS manipulator is 

given in table-1 and stiffness constant is taken to be 

19500 N/mm for each of the linear actuator. A 

MATLAB program written to determine the 

stiffness of the general 3PRS mechanism at its 

maximum and minimum values. The results are 

shown in Fig 4 and in Fig.5.  Let pz = -0.59 M from 

configuration -1 and corresponding values for ψ & θ 

are -0.751 and -0.089 respectively. The results show 

the value of maximum stiffness at this point, is equal 

to be 156.448 kN/m. 

 

 
Fig.3 Maximum stiffness of 3PRS mechanism at 

height Pz=-0.59m 

 

 
Fig 4 Minimum stiffness of 3PRS mechanism at 

height Pz =-0.59m 

The detail design of the 3PRS is carried out on CAD 

software AUTODESK INVENTOR 

PROFESSIONAL® with the same parameters as 

described in table 1.the stiffness of the model is also 

carried out on stress analysis tool for configuration-

1 as shown in fig 9 with 0.1 KN force is applied at 

the tool tip. Fig 8 shows the total displacement of the 

manipulator. The stiffness can be obtained by the 

relation (F)⁄∆x. Where F denotes the applied force 

and ∆x is the total deflection. From the model FEA 

analysis we obtain the maximum stiffness = 156.274 

kN/m. Table 2 shows the comparison of results with 

both numerical model and the FEA model. Fig 5 is 

showing the displacement distribution along X-axis, 

Y-axis and Z-axis respectively. 
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Fig 5 Total deformation, deformation in X-axis, 

Y-axils and Z-axis showing in figures in 

sequence these are represented. 

 

The comparison of stiffness results using numerical 

model is having only an error of 0.1%, which is very 

small and hence the stiffness analysis of 3PRS 

mechanism is done and verified. 

  

Table 2: Comparison of Results Obtain from 

Numerical Method and Fea Model 

Maximum Stiffness (kN/m) 

Numerical Model 156.448 

FEA Model 156.274 

 

IV. CONCLUSIONS 

 

 The stiffness analysis of 3PRS manipulator is 

performed in this paper.  The stiffness 

characteristics of the actuator, as well as the changes 

in actuator angle (α), are also calculated numerically. 

The stiffness matrix's minimum and maximum 

eigenvalues are frequently used as performance 

indices.  These values can be used to estimate the 

stiffness of 3 PRS manipulator.  FEA analysis is 

performed and results are compared using both 

analytical and numerical analysis. Both techniques 

gave a good match as presented by the data in this 

paper. The difference is only 0.1% in analytical and 

numerical model. 

 

REFERENCES 

 

[1] Fuwei Sun, Junwei Zhao, Guoqiang Chen, 

Analysis  on  Kinematic  Performance  Index 

of  3-PRS    Parallel   Mechanism,   Advanced  

  

  

 

 

 

 

 

 Science and Technology Letters, Vol.143 

(AST 2017), pp.106-112 

[2] Gough, V. and S. Whitehall. Universal tyre 

test machine in Proc. FISITA 9th Int. 

Technical Congress. 1962. 

[3] Stewart, D., A platform with six degrees of 

freedom. Proceedings of the institution of 

mechanical engineers, 1965. 180(1): p. 371-

386. 

[4] Hunt, K., Structural kinematics of in-parallel-

actuated robot-arms. Journal of Mechanisms, 

Transmissions, and Automation in Design, 

1983. 105(4): p. 705-712. 

[5] Tsai, L.-W., Robot analysis: the mechanics of 

serial and parallel manipulators. 1999: John 

Wiley & Sons. 

[6] Gosselin, C. and J. Angeles, The optimum 

kinematic design of a planar three-degree-of-

freedom parallel manipulator. Journal of 

Mechanisms, Transmissions, and 

Automation in Design, 1988. 110(1): p. 35-

41. 

[7] Taghirad, H.D., Parallel robots: mechanics 

and control. 2013: CRC press. 

[8] Lee, K.-M. and D.K. Shah, Kinematic 

analysis of a three-degrees-of-freedom in-

parallel actuated manipulator. IEEE Journal 

on Robotics and Automation, 1988. 4(3): p. 

354-360. 

[9] Carretero, J., et al., Kinematic analysis and 

optimization of a new three degree-of-

freedom spatial parallel manipulator. Journal 

of mechanical design, 2000. 122(1): p. 17-24. 

[10] Tsai, M.-S., et al., Direct kinematic analysis 

of a 3-PRS parallel mechanism. Mechanism 

and Machine Theory, 2003. 38(1): p. 71-83. 

[11] Pond, G.T. and J.A. Carretero. Kinematic 

analysis and workspace determination of the 

inclined PRS parallel manipulator. in Proc. of 

15th CISM-IFToMM Symposium on Robot 

Design, Dynamics, and Control. 2004. 

[12] S. Ramana Babu et.al, Design optimization of 

3PRS parallel manipulator using global 

performance indices, Journal of Mechanical 

Science and Technology, 30 (9), 2016. 

[13] Antonio Ruiz, et.al, Mechatronic Model of a 

Compliant 3PRS Parallel Manipulator, 

Robotics, MDPI, robotics11010004, 2022. 

[14] Mervin Joe Thomas, et.al, Kinematic 

and Dynamic Analysis of a 3-PRUS Spatial 

Parallel Manipulator, Chinese Journal of 

Mechanical Engineering, 33:13, 2020. 


