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Abstract-  Identifying authors relies on their unique 

writing patterns, also known as stylometry. However, 

as each individual's stylometry may differ, it can be 

challenging to determine the true author, especially 

when multiple documents exist. This difficulty is 

compounded by similarities in writing styles, such as 

font and language, which can obscure the author's 

identity. To address this issue, machine learning 

techniques can be employed to identify human 

attitudes in written documents. By analyzing patterns 

in human behavior, it is possible to enhance privacy 

and security by detecting malicious users and malware 

programs. However, the use of behavior analysis may 

raise privacy concerns, particularly for individuals 

seeking to conceal their identity. Authorship 

attribution involves using stylometry techniques to 

identify the authors of multiple documents, and can aid 

in accurately identifying authors. In this research, we 

propose using stylometry to extract the number of 

programmers from a given database, and to analyze 

different datasets to determine whether a program's 

coding style remains consistent. This analysis can 

enhance the reliability and quality of programming, 

ultimately improving the overall efficiency of 

programming tasks. 
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I. INTRODUCTION 

 

 Language is a crucial aspect of communication, 

and any coherent sentence is considered a part of a 

language. Various techniques, such as natural 

language processing (NLP) and machine learning 

(ML), can be used to analyze the behavior of 

programmers. Each developer has their unique writing 

style and coding patterns. For example, a developer 

may prefer a for loop over a while loop, a switch 

statement over multiple if-else statements, or more 

elaborate code structures than a simple code. These 

variations can raise privacy concerns as many 

programmers wish to maintain their anonymity, even 

if they are the creators of popular software such as 

Bitcoin. This aspect of coding can be beneficial in 

anonymizing donor names, pilgrims, forensic reports, 

and malware issues, among others. 

Computer code can be identified by matching its 

features, such as control structures and data types. 

Programming offers many opportunities for variation 

and innovation, and each programmer has a unique 

writing pattern. Using stylistic elements can help 

programmers reuse, produce, and debug code. During 

programming, programmers often combine elements 

of others' styles into their documents. Identifying the 

authorship of code requires an adequate body of code 

and the identification of features for comparison. 

However, it can be challenging to identify the author 

if they have attempted to conceal their authorship or if 

the code sample is unavailable. Nonetheless, essential 

features may still be present for analysis. Analyzing 

code attributes may lead to the identification of 

suspects for further investigation. Moreover, if 

sufficient background research is conducted to 

establish a statistical base and if large code samples 

are available, statistical methods can be applied to find 

the authorship. However, it is uncertain whether these 

features can be combined with stylistic features to 

provide clues for the authorship of code. 

Author identification is a valuable technique for 

determining who is most likely to have written 

messages, articles, code, or news. This task is 

commonly viewed as a text categorization problem 

with multiple classes and a single label. It is a 

fascinating topic in natural language processing, with 

numerous applications, including identifying 

anonymous authors, detecting plagiarism, assisting in 

crime investigation and security, and locating 

ghostwriters. 

Most previous efforts to classify authors have relied on 

n-grams, which are character constants of varying 

lengths. In this paper, we use multiple text-based 

models and machine learning methods with increasing 

mailto:munwar89@gmail.com


Technical Journal, University of Engineering and Technology (UET) Taxila, Pakistan  Vol. 28 No. 1-2023 

ISSN:1813-1786 (Print) 2313-7770 (Online) 

29 

feature engineering at various stages to address the 

problem. To gain a better understanding of the models, 

our suggested approach evaluates multiple stylometric 

aspects and selects individual features with strong 

performance. We test the methodology on a portion of 

the Reuters news corpus, which consists of works by 

50 different authors on the same topic. Our 

experiments show that using document fingerprinting 

features improves the classifier's accuracy, and 

principal component analysis (PCA) enhances the 

outcomes. Additionally, we compare our findings to 

previous studies in the authorship identification field. 

 

II. LITERATURE REVIEW 

 

 The earliest attempt at authorship identification 

focused on [1] attribute counting-metric systems, 

which featured metrics for counting the number of 

code lines, unique operands, or declared variables; and 

[1, 2] structure metrics, which contrasted abstract 

representations of the program structure [3]. Machine 

learning methodologies are used in most of the 

publications in the bibliography today. For example, 

the authors created an authorship identification 

method that extracts statistical information like word 

n-grams and some hand-crafted aspects like code 

structure. According to the authors, some hand-crafted 

features reflect "explicit and implicit personal 

programming preference patterns of and between 

keywords, identifiers, operators, statements, methods, 

and classes." Without using hand-crafted 

characteristics, Bander et al. used Recurrent Neuronal 

Networks (RNNs) based on traditional and 

bidirectional Long-Short Term Memory networks 

(BiLSTM) from the Abstract Syntax Tree (AST) in 

[4]. Another RNN study is detailed in [5]. The authors 

used a Gated Recurrent Unit (GRU) tested on two 

datasets and achieved an accuracy of 69.1 percent and 

89.2 percent, respectively. Another method is 

described in [6], in which the authors compare Latent 

Semantic Analysis (LSA) with re-use detection 

models to determine source code cross-language 

similarity. The writers' contribution in [6] is two-fold. 

On the one hand, they show two language-independent 

models that outperformed language-specific models 

on datasets from three common programming 

languages. On the other hand, they point out several 

flaws in source-code datasets for authors profiling, 

emphasizing how the environment in which 

programmers write code (which they regard as the 

work context) influences their style by compelling 

them to make certain decisions, such as naming 

conventions. They further claim that (1) existing 

datasets ignore equitable code collaboration and (2) 

the reality that author styles can change over time. The 

authors of [7] advocated working on authorship of 

source code segments to address the issue of fair code 

collaboration. They used a stacking ensemble strategy 

that combined deep neural networks and machine 

learning classifiers to provide promising results. [8] 

takes an exciting approach to authorship attribution by 

reversing the problem and a black-box attack for 

authorship identification of source code is presented 

by performing semantics-preserving code 

transformations to create variations of the source code 

that fool machine-learning solutions into inducing 

false attributions. The goal of this method is to 

generate source code for use in adversarial learning. 

The author's work in the software sector has gotten a 

lot of attention at scientific seminars and conferences. 

The shared task detection of source code Re-use [9] 

was suggested as a PAN shared task in 2014, and it 

consisted of identifying source code re-use from an 

unbalanced dataset of C and Java code. This challenge 

was completed by five teams, with 17 runs. [10] 

describes another shared task in which participants 

were asked to predict the author's personality based on 

four significant qualities extracted from Java source 

code. 48 runs from 11 participants were sent at the end 

of the challenge. 

So, there is an overlook to authorship identification 

and attribution to discover exciting ways to help us 

build our models. 

 

Stylometric Methodologies 

Stylometry is focused on recognizing features in 

written text that are related to an user's stylistic 

decisions. It is the earliest technique in code 

authorship attribution. Krsul and Spafford [11] 

proposed 49 different features in three major areas: (1) 

programming style such as comment naming style, 

variables and functions. (2) layout specific metrics 

such as indentation and comment style; and (3) 

program structure such as  presence of debugging 

identifiers or assertions, the use of specific data 

structures, and error handling. 

 

Abstract Syntax Tree Approaches 

Abstract Syntax Trees (ASTs) are tree structures 

representing the abstract structure of a source code and 

are a most important source of information in the 

analysis of programs. Caliskan-Islam [12] proposed 

combining a stylometric feature set recovered from a 

source code's AST with lexical and layout features 

elicited directly from the source code. Caliskan-Islam 

[12] discovered that AST node bigrams were the 

significant feature for determining different authors.  

CodeBERT [13] is a multi-layer bidirectional 

Transformer model that has been pre-trained and is 

built on the same architecture as RoBERTa. 

CodeBERT, unlike RoBERTa, is intended for usage in 

both natural language and programming language 
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applications, such as code documentation and natural 

language code search. Instead of leveraging 

information from the code AST, as models like 

code2vec [13] and code2seq [14] do, CodeBERT 

produce feature vectors for code segments using 

contextual information from surrounding words. 

Qiqqa is a free referencing and research tool. It is used 

to find, read, and annotate PDF files. We can quickly 

go through our work, write it up, and make 

bibliographies. It is an Excellent document and 

reference handling. It imports PDF files into different 

libraries. OCR and tag extraction are done 

automatically. Qiqqa can help fill in the gaps in 

millions of research publications' metadata. Full-text 

search, duplicate document identification, inbound 

and outbound linkages, and much more are just a few 

of the features available. 

Built-in PDF reader with annotation, highlighting, and 

automated jump links, among other features. We may 

produce printable summaries of our notes within the 

Microsoft Word processor, mind maps of 

our thoughts, immediately credit our references, and 

automatically build bibliographies. 

 

 
Fig 1: Related work for Authorship Contribution 

 

 
Fig 2: Related work based on expansion of proposed 

work 

 

 

III. RESEARCH METHODOLOGY 

 

 We treat a source code file as sample data to 

identify the programmer of a document or source code 

file. We used numerous source code files to train our 

model. We used the test on other source code files 

when the training was completed. 

 

Dataset 

The Google Code Jam dataset programming 

competition, which ran from 2008 to 2021, provides 

a collection of solutions and code from previous 

Code Jam rounds. The dataset aims to facilitate 

experimentation with problems of varying levels of 

difficulty. Some files may be missing special 

characters and encodings, particularly among 

Chinese contestants. Additionally, due to 

modifications in the structure of the contest pages by 

Google, the file names for rounds held from 2018 to 

2021 are slightly different. 

 

 
Fig 3: Dataset of programmers’ competition 

containing source code files 

 

Each .csv file consists of Year, Round, Username, 

Task, Solution, File, Full Path, and Felines, 

respectively. Flines data indicates the source code. 

Using that source code, we are working on our pre-

processing steps. A sample view of gcj2009 is 

attached in the fig 4. 

 

 
Fig 4: Dataset view for source code files 
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Pre-processing 

Pre-processing is the process of doing some tasks 

before model implementation on the dataset. 

In this article, following techniques have been used as 

pre-processing for the dataset. 

1. Selecting required columns from csv i.e. 

Username and Flines. 

2. Punctuation removal. 

3. Tokenization of the punctuation removed dataset. 

4. Replacing null with 0. 

5. Calculation of TF-IDF values from tokens. 

6. Rounding up the decimal values. 

Simply we can take the pre-processing as cleaning, 

transforming and selection of data.  It breaks the PDG 

into tokens and then calculates each token's frequency. 

The pre-processing steps include cleaning, instances, 

selection, transformation. As model implementation 

doesn’t need noise in the data. TF-IDF values indicate 

the number of occurrences of each element indifferent 

source codes [15]. 

In the first step of working on the dataset, we read our 

CSV files using the python libraries. We extract two 

main features we have to work with and are concerned 

with. These features are username and Flines. Flines is 

the column in .csv files which contains the source code 

of different languages of different programmers. 

These two features are put into a list and then stored in 

a new CSV. 

 

Punctuation Removal 

The next step in the pre-processing of the dataset is 

punctuation removal. This step is done on the CSV 

files created with the two features having a username 

and flines (source code). The library used for 

performing punctuation removal is mentioned in fig 5. 

 

 
Fig 5: Punctuation removal using Python  

 

The output of this code having punctuation-free source 

codes corresponding to each username is saved to a 

new CSV named "Punctuation_free.csv." The output 

view is showed as in the figure 6. 

 

 
Fig 6: Punctuation removal output 

Tokenization 

The breaking of large text bodies into smaller chunks 

or words is knows as tokenization. 

Tokenization applied to GCJ 2009 file is shown in the 

fig 7: 

 

 
Fig 7: Python implementation for Tokenization 

 

In tokenization the desired output is the tokens of 

whole code, and these tokens are considered to be the 

stylometric features. On the basis of these features the 

TF-IDF values are generated and model is trained 

output CSV sample is shown the fig 8: 

 

 
Fig 8: Output of Tokenization for source code files 

 

TF-IDF 

Based on the information retrieved from the code 

segments, we can generate feature vectors.  

It's only the frequency of each word or keyword and 

the document frequency in reverse (TF-IDF). We can 

use TF-IDF for determining that which keyword is 

more essential for the author who used it. The TF-IDF 

value is the multiplication of the ratio of a word in a 

document by the reciprocal ratio used in all 

documents. 

 

Bag of Words Extraction  

The bag-of-words model is a best natural language 

processing model. In this model, text is considered to 

be collection of words. In other words, it's the 

representation of missing document attributes in the 

form of frequencies that appears in the document to 

build a dictionary. In this dictionary, characters, 

character n-grams, words, words n-grams, and other 

text characteristics may be found. 

 

Steps in calculating TF/IDF calculation 

First, it was necessary to input the data in the 

processed form. For that purpose, I have pre-processed 

the dataset explained in the above sections, i.e., 
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Selecting the relevant features from the CSV, 

punctuation removal, and tokenization. Tokenization 

was a challenging task because tokenizing the data 

with nearly 175000 rows and then storing it into a new 

CSV was difficult as tokens are comma-separated 

objects. In CSV, each column is also a comma-

separated index. SO for that purpose, I have searched 

out more ways to store and finally did it using the 

tokenization function in python. The next task to 

calculate TF/IDF more challenging. Many ways can 

do it. 

The first idea was to put all the tokens into a txt corpus 

and then give it input to the TF/IDF function to process 

and then calculate it. The output will be in the form 

that there would be two columns. One for the tokens 

list, and the next would be the TF/IDF values against 

each token. Then I would have to apply the 

transformation function to change the view of CSV to 

adjust the username against tokens and their TF/IDF 

values. The output would be that the columns will be 

a features list, i.e., the tokens used by each 

programmer, and under them would be their values. 

Next, I have to save the TF/IDF values against each 

programmer in the form of a text file so that a check 

would have to be applied. The purpose of the check is 

that csv has multiple codes against the same author so 

that the text files would be against each row. The 

check would determine if the same username exists, 

then append the txt with the previous and if it does 

exist, then create a new txt. In this case, more text 

would have been generated. But to handle all this, we 

did this in a single CSV. Path for tokens generated csv 

is given as input for TF-IDF calculation and result 

generates as shown in the fig 9. 

 

 
Fig 9: Output of TF-IDF csv file 

 

But the issue was to handle such a large dataset to train 

the algorithm as the output file for TF-IDF contains 

nearly 64000 features and 3000 rows. So, a 

mechanism required to handle the situation. 

 

Iteration on 5 Programmers 

To handle the situation, I took up the data of % 

programmers and passed it into whole procedure i.e., 

Selecting up two required columns (username and 

flines code), punctuation removal, Tokenization, Tf-

IDF values and parsing up into H20 tool for 

calculation. The overall interface was shown in the fig 

10. 

 

 
Fig 10: H2O programmers’ tool overview 

 

Steps for implementation on H20 

1.Importing files from device. 

 

 
Fig 11: Importing files using H2O 

 

2.Parsing of files. 

 

 
Fig 12: Parsing files using H2O 

 

 
Fig 13: Set-up Parsing files using H2O 

 

Model Building 

Next step is to apply model for training. First of all 

select model parameters and then apply model 

building. 
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Fig 14: Model Parameters for dataset 

 

 
Fig 15: Building model using Deep Learning 

 

Iteration on 15 Programmers 

First of all import dataset and these repeat the steps 

as mentioned above. The purpose is to check on each 

iteration that when the training and prediction stops 

and overall result is generated.  

 

 
Fig 16: Cross Validation Summary for 15 

programmers 

 

Iteration on 50 Programmers 

When we apply all the pre-processing steps and 

generate a final TF-IDF csv file for 50 programmers 

then it can be considered as input for all the training 

metrices. 

Variable importance for each of the metrices for 50 

programmers is shown in Fig 17. 

 
Fig 17: Output variable importance for 15 

programmers 

 

Overall methodology of the proposed work is to take 

sample data, then pre-process it accordingly and then 

finally train it using Deep Learning Algorithm and 

then match the result on testing data. 

 

IV. RESULTS AND DISCUSSION 

 

 In this section, we will discuss findings and 

results of our methodology proposed in the above 

section. As discussed in the methodology section, 

dataset is broken into number of programmers and 

based in that division, results are discussed for each of 

the iteration. 

 

Iteration on 5 programmers 

 

 
Fig 18: Scoring history for 5 programmers 
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Fig 19: Scoring History-2 for 5 programmers 

 

 
Fig 20: Output Metrices for 5 programmers 

 

Cross Validation 

 
Fig 21: Cross Validation for 15 Programmers 

 

 
Fig 22:  Variable importance of each variable for 15 

programmers 

 
Fig 23: Variable importance_2 of each variable for 

15 programmers 

 

 

V. CONCLUSION AND FUTURE WORK 

 

 This paper discusses the use of code smells and 

aesthetic features in authorship detection. Author 

attribution is a technique that involves extracting 

features to identify the author of a piece of code. In 

this study, the effectiveness of both stylistic features, 

which are related to the author's writing style, and code 

smells, which are a novel contribution, are evaluated 

for feature representation in source code. To determine 

the author's style and code smells, two test cases are 

examined. The first test case determines the author's 

stylistic proficiency, while the second test case focuses 

on the combined performance of style-related features 

and code smells. The extracted features were found to 

be useful in authorship attribution when paired with 

code smells and stylistic traits, resulting in higher 

classification accuracy. In this paper, deep learning is 

utilized for model training and to analyze the results. 

Based on the findings of this study, future attempts 

will be made to perform multi-author attribution of 

source code. 
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