
Technical Journal, University of Engineering and Technology (UET) Taxila, Pakistan Vol. 28 No. 1-2023

ISSN:1813-1786 (Print) 2313-7770 (Online)

28

A Stylometric Fingerprinting Method for Author

Identification Using Machine Learning

M. M. Iqbal1, A. Raza2, M. M. Aslam3, M. Farhan4, S. Yaseen5

1Department of Computer Science, University of Engineering and Technology, Taxila, Pakistan,

2,3,4,5Department of Computer Science COMSATS University Islamabad, Sahiwal Campus, Pakistan

munwar89@gmail.com

Abstract- Identifying authors relies on their unique

writing patterns, also known as stylometry. However,

as each individual's stylometry may differ, it can be

challenging to determine the true author, especially

when multiple documents exist. This difficulty is

compounded by similarities in writing styles, such as

font and language, which can obscure the author's

identity. To address this issue, machine learning

techniques can be employed to identify human

attitudes in written documents. By analyzing patterns

in human behavior, it is possible to enhance privacy

and security by detecting malicious users and malware

programs. However, the use of behavior analysis may

raise privacy concerns, particularly for individuals

seeking to conceal their identity. Authorship

attribution involves using stylometry techniques to

identify the authors of multiple documents, and can aid

in accurately identifying authors. In this research, we

propose using stylometry to extract the number of

programmers from a given database, and to analyze

different datasets to determine whether a program's

coding style remains consistent. This analysis can

enhance the reliability and quality of programming,

ultimately improving the overall efficiency of

programming tasks.

Keywords- Stylometry, author identification,

programmer deanonymization, machine learning,

deep learning

I. INTRODUCTION

 Language is a crucial aspect of communication,

and any coherent sentence is considered a part of a

language. Various techniques, such as natural

language processing (NLP) and machine learning

(ML), can be used to analyze the behavior of

programmers. Each developer has their unique writing

style and coding patterns. For example, a developer

may prefer a for loop over a while loop, a switch

statement over multiple if-else statements, or more

elaborate code structures than a simple code. These

variations can raise privacy concerns as many

programmers wish to maintain their anonymity, even

if they are the creators of popular software such as

Bitcoin. This aspect of coding can be beneficial in

anonymizing donor names, pilgrims, forensic reports,

and malware issues, among others.

Computer code can be identified by matching its

features, such as control structures and data types.

Programming offers many opportunities for variation

and innovation, and each programmer has a unique

writing pattern. Using stylistic elements can help

programmers reuse, produce, and debug code. During

programming, programmers often combine elements

of others' styles into their documents. Identifying the

authorship of code requires an adequate body of code

and the identification of features for comparison.

However, it can be challenging to identify the author

if they have attempted to conceal their authorship or if

the code sample is unavailable. Nonetheless, essential

features may still be present for analysis. Analyzing

code attributes may lead to the identification of

suspects for further investigation. Moreover, if

sufficient background research is conducted to

establish a statistical base and if large code samples

are available, statistical methods can be applied to find

the authorship. However, it is uncertain whether these

features can be combined with stylistic features to

provide clues for the authorship of code.

Author identification is a valuable technique for

determining who is most likely to have written

messages, articles, code, or news. This task is

commonly viewed as a text categorization problem

with multiple classes and a single label. It is a

fascinating topic in natural language processing, with

numerous applications, including identifying

anonymous authors, detecting plagiarism, assisting in

crime investigation and security, and locating

ghostwriters.

Most previous efforts to classify authors have relied on

n-grams, which are character constants of varying

lengths. In this paper, we use multiple text-based

models and machine learning methods with increasing

mailto:munwar89@gmail.com

Technical Journal, University of Engineering and Technology (UET) Taxila, Pakistan Vol. 28 No. 1-2023

ISSN:1813-1786 (Print) 2313-7770 (Online)

29

feature engineering at various stages to address the

problem. To gain a better understanding of the models,

our suggested approach evaluates multiple stylometric

aspects and selects individual features with strong

performance. We test the methodology on a portion of

the Reuters news corpus, which consists of works by

50 different authors on the same topic. Our

experiments show that using document fingerprinting

features improves the classifier's accuracy, and

principal component analysis (PCA) enhances the

outcomes. Additionally, we compare our findings to

previous studies in the authorship identification field.

II. LITERATURE REVIEW

 The earliest attempt at authorship identification

focused on [1] attribute counting-metric systems,

which featured metrics for counting the number of

code lines, unique operands, or declared variables; and

[1, 2] structure metrics, which contrasted abstract

representations of the program structure [3]. Machine

learning methodologies are used in most of the

publications in the bibliography today. For example,

the authors created an authorship identification

method that extracts statistical information like word

n-grams and some hand-crafted aspects like code

structure. According to the authors, some hand-crafted

features reflect "explicit and implicit personal

programming preference patterns of and between

keywords, identifiers, operators, statements, methods,

and classes." Without using hand-crafted

characteristics, Bander et al. used Recurrent Neuronal

Networks (RNNs) based on traditional and

bidirectional Long-Short Term Memory networks

(BiLSTM) from the Abstract Syntax Tree (AST) in

[4]. Another RNN study is detailed in [5]. The authors

used a Gated Recurrent Unit (GRU) tested on two

datasets and achieved an accuracy of 69.1 percent and

89.2 percent, respectively. Another method is

described in [6], in which the authors compare Latent

Semantic Analysis (LSA) with re-use detection

models to determine source code cross-language

similarity. The writers' contribution in [6] is two-fold.

On the one hand, they show two language-independent

models that outperformed language-specific models

on datasets from three common programming

languages. On the other hand, they point out several

flaws in source-code datasets for authors profiling,

emphasizing how the environment in which

programmers write code (which they regard as the

work context) influences their style by compelling

them to make certain decisions, such as naming

conventions. They further claim that (1) existing

datasets ignore equitable code collaboration and (2)

the reality that author styles can change over time. The

authors of [7] advocated working on authorship of

source code segments to address the issue of fair code

collaboration. They used a stacking ensemble strategy

that combined deep neural networks and machine

learning classifiers to provide promising results. [8]

takes an exciting approach to authorship attribution by

reversing the problem and a black-box attack for

authorship identification of source code is presented

by performing semantics-preserving code

transformations to create variations of the source code

that fool machine-learning solutions into inducing

false attributions. The goal of this method is to

generate source code for use in adversarial learning.

The author's work in the software sector has gotten a

lot of attention at scientific seminars and conferences.

The shared task detection of source code Re-use [9]

was suggested as a PAN shared task in 2014, and it

consisted of identifying source code re-use from an

unbalanced dataset of C and Java code. This challenge

was completed by five teams, with 17 runs. [10]

describes another shared task in which participants

were asked to predict the author's personality based on

four significant qualities extracted from Java source

code. 48 runs from 11 participants were sent at the end

of the challenge.

So, there is an overlook to authorship identification

and attribution to discover exciting ways to help us

build our models.

Stylometric Methodologies

Stylometry is focused on recognizing features in

written text that are related to an user's stylistic

decisions. It is the earliest technique in code

authorship attribution. Krsul and Spafford [11]

proposed 49 different features in three major areas: (1)

programming style such as comment naming style,

variables and functions. (2) layout specific metrics

such as indentation and comment style; and (3)

program structure such as presence of debugging

identifiers or assertions, the use of specific data

structures, and error handling.

Abstract Syntax Tree Approaches

Abstract Syntax Trees (ASTs) are tree structures

representing the abstract structure of a source code and

are a most important source of information in the

analysis of programs. Caliskan-Islam [12] proposed

combining a stylometric feature set recovered from a

source code's AST with lexical and layout features

elicited directly from the source code. Caliskan-Islam

[12] discovered that AST node bigrams were the

significant feature for determining different authors.

CodeBERT [13] is a multi-layer bidirectional

Transformer model that has been pre-trained and is

built on the same architecture as RoBERTa.

CodeBERT, unlike RoBERTa, is intended for usage in

both natural language and programming language

Technical Journal, University of Engineering and Technology (UET) Taxila, Pakistan Vol. 28 No. 1-2023

ISSN:1813-1786 (Print) 2313-7770 (Online)

30

applications, such as code documentation and natural

language code search. Instead of leveraging

information from the code AST, as models like

code2vec [13] and code2seq [14] do, CodeBERT

produce feature vectors for code segments using

contextual information from surrounding words.

Qiqqa is a free referencing and research tool. It is used

to find, read, and annotate PDF files. We can quickly

go through our work, write it up, and make

bibliographies. It is an Excellent document and

reference handling. It imports PDF files into different

libraries. OCR and tag extraction are done

automatically. Qiqqa can help fill in the gaps in

millions of research publications' metadata. Full-text

search, duplicate document identification, inbound

and outbound linkages, and much more are just a few

of the features available.

Built-in PDF reader with annotation, highlighting, and

automated jump links, among other features. We may

produce printable summaries of our notes within the

Microsoft Word processor, mind maps of

our thoughts, immediately credit our references, and

automatically build bibliographies.

Fig 1: Related work for Authorship Contribution

Fig 2: Related work based on expansion of proposed

work

III. RESEARCH METHODOLOGY

 We treat a source code file as sample data to

identify the programmer of a document or source code

file. We used numerous source code files to train our

model. We used the test on other source code files

when the training was completed.

Dataset

The Google Code Jam dataset programming

competition, which ran from 2008 to 2021, provides

a collection of solutions and code from previous

Code Jam rounds. The dataset aims to facilitate

experimentation with problems of varying levels of

difficulty. Some files may be missing special

characters and encodings, particularly among

Chinese contestants. Additionally, due to

modifications in the structure of the contest pages by

Google, the file names for rounds held from 2018 to

2021 are slightly different.

Fig 3: Dataset of programmers’ competition

containing source code files

Each .csv file consists of Year, Round, Username,

Task, Solution, File, Full Path, and Felines,

respectively. Flines data indicates the source code.

Using that source code, we are working on our pre-

processing steps. A sample view of gcj2009 is

attached in the fig 4.

Fig 4: Dataset view for source code files

Technical Journal, University of Engineering and Technology (UET) Taxila, Pakistan Vol. 28 No. 1-2023

ISSN:1813-1786 (Print) 2313-7770 (Online)

31

Pre-processing

Pre-processing is the process of doing some tasks

before model implementation on the dataset.

In this article, following techniques have been used as

pre-processing for the dataset.

1. Selecting required columns from csv i.e.

Username and Flines.

2. Punctuation removal.

3. Tokenization of the punctuation removed dataset.

4. Replacing null with 0.

5. Calculation of TF-IDF values from tokens.

6. Rounding up the decimal values.

Simply we can take the pre-processing as cleaning,

transforming and selection of data. It breaks the PDG

into tokens and then calculates each token's frequency.

The pre-processing steps include cleaning, instances,

selection, transformation. As model implementation

doesn’t need noise in the data. TF-IDF values indicate

the number of occurrences of each element indifferent

source codes [15].

In the first step of working on the dataset, we read our

CSV files using the python libraries. We extract two

main features we have to work with and are concerned

with. These features are username and Flines. Flines is

the column in .csv files which contains the source code

of different languages of different programmers.

These two features are put into a list and then stored in

a new CSV.

Punctuation Removal

The next step in the pre-processing of the dataset is

punctuation removal. This step is done on the CSV

files created with the two features having a username

and flines (source code). The library used for

performing punctuation removal is mentioned in fig 5.

Fig 5: Punctuation removal using Python

The output of this code having punctuation-free source

codes corresponding to each username is saved to a

new CSV named "Punctuation_free.csv." The output

view is showed as in the figure 6.

Fig 6: Punctuation removal output

Tokenization

The breaking of large text bodies into smaller chunks

or words is knows as tokenization.

Tokenization applied to GCJ 2009 file is shown in the

fig 7:

Fig 7: Python implementation for Tokenization

In tokenization the desired output is the tokens of

whole code, and these tokens are considered to be the

stylometric features. On the basis of these features the

TF-IDF values are generated and model is trained

output CSV sample is shown the fig 8:

Fig 8: Output of Tokenization for source code files

TF-IDF

Based on the information retrieved from the code

segments, we can generate feature vectors.

It's only the frequency of each word or keyword and

the document frequency in reverse (TF-IDF). We can

use TF-IDF for determining that which keyword is

more essential for the author who used it. The TF-IDF

value is the multiplication of the ratio of a word in a

document by the reciprocal ratio used in all

documents.

Bag of Words Extraction

The bag-of-words model is a best natural language

processing model. In this model, text is considered to

be collection of words. In other words, it's the

representation of missing document attributes in the

form of frequencies that appears in the document to

build a dictionary. In this dictionary, characters,

character n-grams, words, words n-grams, and other

text characteristics may be found.

Steps in calculating TF/IDF calculation

First, it was necessary to input the data in the

processed form. For that purpose, I have pre-processed

the dataset explained in the above sections, i.e.,

Technical Journal, University of Engineering and Technology (UET) Taxila, Pakistan Vol. 28 No. 1-2023

ISSN:1813-1786 (Print) 2313-7770 (Online)

32

Selecting the relevant features from the CSV,

punctuation removal, and tokenization. Tokenization

was a challenging task because tokenizing the data

with nearly 175000 rows and then storing it into a new

CSV was difficult as tokens are comma-separated

objects. In CSV, each column is also a comma-

separated index. SO for that purpose, I have searched

out more ways to store and finally did it using the

tokenization function in python. The next task to

calculate TF/IDF more challenging. Many ways can

do it.

The first idea was to put all the tokens into a txt corpus

and then give it input to the TF/IDF function to process

and then calculate it. The output will be in the form

that there would be two columns. One for the tokens

list, and the next would be the TF/IDF values against

each token. Then I would have to apply the

transformation function to change the view of CSV to

adjust the username against tokens and their TF/IDF

values. The output would be that the columns will be

a features list, i.e., the tokens used by each

programmer, and under them would be their values.

Next, I have to save the TF/IDF values against each

programmer in the form of a text file so that a check

would have to be applied. The purpose of the check is

that csv has multiple codes against the same author so

that the text files would be against each row. The

check would determine if the same username exists,

then append the txt with the previous and if it does

exist, then create a new txt. In this case, more text

would have been generated. But to handle all this, we

did this in a single CSV. Path for tokens generated csv

is given as input for TF-IDF calculation and result

generates as shown in the fig 9.

Fig 9: Output of TF-IDF csv file

But the issue was to handle such a large dataset to train

the algorithm as the output file for TF-IDF contains

nearly 64000 features and 3000 rows. So, a

mechanism required to handle the situation.

Iteration on 5 Programmers

To handle the situation, I took up the data of %

programmers and passed it into whole procedure i.e.,

Selecting up two required columns (username and

flines code), punctuation removal, Tokenization, Tf-

IDF values and parsing up into H20 tool for

calculation. The overall interface was shown in the fig

10.

Fig 10: H2O programmers’ tool overview

Steps for implementation on H20

1.Importing files from device.

Fig 11: Importing files using H2O

2.Parsing of files.

Fig 12: Parsing files using H2O

Fig 13: Set-up Parsing files using H2O

Model Building

Next step is to apply model for training. First of all

select model parameters and then apply model

building.

Technical Journal, University of Engineering and Technology (UET) Taxila, Pakistan Vol. 28 No. 1-2023

ISSN:1813-1786 (Print) 2313-7770 (Online)

33

Fig 14: Model Parameters for dataset

Fig 15: Building model using Deep Learning

Iteration on 15 Programmers

First of all import dataset and these repeat the steps

as mentioned above. The purpose is to check on each

iteration that when the training and prediction stops

and overall result is generated.

Fig 16: Cross Validation Summary for 15

programmers

Iteration on 50 Programmers

When we apply all the pre-processing steps and

generate a final TF-IDF csv file for 50 programmers

then it can be considered as input for all the training

metrices.

Variable importance for each of the metrices for 50

programmers is shown in Fig 17.

Fig 17: Output variable importance for 15

programmers

Overall methodology of the proposed work is to take

sample data, then pre-process it accordingly and then

finally train it using Deep Learning Algorithm and

then match the result on testing data.

IV. RESULTS AND DISCUSSION

 In this section, we will discuss findings and

results of our methodology proposed in the above

section. As discussed in the methodology section,

dataset is broken into number of programmers and

based in that division, results are discussed for each of

the iteration.

Iteration on 5 programmers

Fig 18: Scoring history for 5 programmers

Technical Journal, University of Engineering and Technology (UET) Taxila, Pakistan Vol. 28 No. 1-2023

ISSN:1813-1786 (Print) 2313-7770 (Online)

34

Fig 19: Scoring History-2 for 5 programmers

Fig 20: Output Metrices for 5 programmers

Cross Validation

Fig 21: Cross Validation for 15 Programmers

Fig 22: Variable importance of each variable for 15

programmers

Fig 23: Variable importance_2 of each variable for

15 programmers

V. CONCLUSION AND FUTURE WORK

 This paper discusses the use of code smells and

aesthetic features in authorship detection. Author

attribution is a technique that involves extracting

features to identify the author of a piece of code. In

this study, the effectiveness of both stylistic features,

which are related to the author's writing style, and code

smells, which are a novel contribution, are evaluated

for feature representation in source code. To determine

the author's style and code smells, two test cases are

examined. The first test case determines the author's

stylistic proficiency, while the second test case focuses

on the combined performance of style-related features

and code smells. The extracted features were found to

be useful in authorship attribution when paired with

code smells and stylistic traits, resulting in higher

classification accuracy. In this paper, deep learning is

utilized for model training and to analyze the results.

Based on the findings of this study, future attempts

will be made to perform multi-author attribution of

source code.

REFERENCES

[1] J. A. García-Díaz and R. Valencia-García,

"UMUTeam at AI-SOCO'2020: Source Code

Authorship Identification based on Character

N-Grams and Author's Traits," in FIRE

(Working Notes), 2020, pp. 717-726.

[2] J. Gravill and D. Compeau, "Self-regulated

learning strategies and software training,"

Information & Management, vol. 45, no. 5, pp.

288-296, 2008.

Technical Journal, University of Engineering and Technology (UET) Taxila, Pakistan Vol. 28 No. 1-2023

ISSN:1813-1786 (Print) 2313-7770 (Online)

35

[3] K. L. Verco and M. J. Wise, "Software for

detecting suspected plagiarism: Comparing

structure and attribute-counting systems," in

ACM International Conference Proceeding

Series, 1996, vol. 1, pp. 81-88.

[4] B. Alsulami, E. Dauber, R. Harang, S.

Mancoridis, and R. Greenstadt, "Source code

authorship attribution using long short-term

memory based networks," in European

Symposium on Research in Computer Security,

2017, pp. 65-82: Springer.

[5] C. Qian, T. He, and R. Zhang, "Deep learning

based authorship identification," Report,

Stanford University, pp. 1-9, 2017.

[6] E. Flores Sáez, L. A. Barrón-Cedeño, L. A.

Moreno Boronat, and P. Rosso, "Cross-

language source code re-use detection using

latent semantic analysis," Journal of Universal

Computer Science, vol. 21, no. 13, pp. 1708-

1725, 2015.

[7] P. Mahbub, N. Z. Oishie, and S. R. Haque,

"Authorship identification of source code

segments written by multiple authors using

stacking ensemble method," in 2019 22nd

International Conference on Computer and

Information Technology (ICCIT), 2019, pp. 1-

6: IEEE.

[8] E. Quiring, A. Maier, and K. Rieck,

"Misleading authorship attribution of source

code using adversarial learning," in 28th

USENIX Security Symposium (USENIX

Security 19), 2019, pp. 479-496.

[9] D. Ganguly, G. J. Jones, A. Ramírez-De-La-

Cruz, G. Ramírez -De - La - Rosa, and E.

Villatoro-Tello, "Retrieving and classifying

instances of source code plagiarism,

"Information Retrieval Journal, vol. 21, no. 1,

pp. 1-23, 2018.

[10] F. Rangel, F. González, F. Restrepo, M.

Montes, and P. Rosso, "PAN@ FIRE: overview

of the PR-SOCO track on personality

recognition in SOurce COde," in Forum for

Information Retrieval Evaluation, 2016, pp. 1-

19: Springer.

[11] I. Krsul and E. H. Spafford, "Authorship

analysis: Identifying the author of a program,"

Computers & Security, vol. 16, no. 3, pp. 233-

257, 1997.

[12] Q. Song, Y. Zhang, L. Ouyang, and Y. Chen,

"BinMLM: Binary Authorship Verification

with Flow-aware Mixture-of-Shared Language

Model," arXiv preprint arXiv:2203.04472,

2022.

[13] Z. Li, "Cross-Lingual Transfer Learning

Framework for Program Analysis," in 2021

36th IEEE/ACM International Conference on

Automated Software Engineering (ASE), 2021,

pp. 1074-1078: IEEE.

[14] D. Vagavolu, K. C. Swarna, and S.

Chimalakonda, "A Mocktail of Source Code

Representations," in 2021 36th IEEE/ACM

International Conference on Automated

Software Engineering (ASE), 2021, pp. 1296-

1300: IEEE.

[15] E. Haddi, X. Liu, and Y. Shi, "The role of text

pre-processing in sentiment analysis," Procedia

computer science, vol. 17, pp. 26-32, 2013.

