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Abstract-  The growing need for sustainable energy 

sources has led to a focus on improving the power 

production capacity of wind turbines. The power 

optimization of wind turbines is chiefly hinged on 

the wind velocity which is mitigated by the wake 

and turbulence effects produced within turbine 

blades. Herein, computational fluid dynamics 

(CFD) techniques have been used for resolving 

wake effects nevertheless the computational method 

is expensive and tedious. In this context, a machine 

learning strategy named surrogate modeling was 

used to predict the reduced velocities inside the 

wake. These models were trained from a small data 

set attained from CFD simulations like input air 

velocities of 6 m/s , 9 m/s and 12 m/s. The machine 

learning surrogate models provided a data set that 

aided to find the wind velocity at any arbitrary point 

and helped in calculating required parameters in 

real-time without running costly CFD simulations 

with least error like mean absolute error of 0.000096 

by GBR model. Additionally, contribute to power 

improvement and reliability of wind turbines and 

wind farm layout optimization. The findings are 

applicable for optimized performance of the wind 

turbine wakes at bench and commercial scales 
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I. INTRODUCTION 

 

 Wind turbine optimization is primarily 

dependent on the wind velocity and wakes patterns 

within turbine blades. During the power extraction 

from the wind as the turbine blades move, a wind 

turbine experiences wake and turbulence effects, 

which results in the reduction of, wind velocity and 

ultimately power losses.  

Different mathematical models were designed to 

examine and determine the turbine specifications 

which are implemented to estimate the output of 

wind turbines [1]. The pivotal factor for deploying 

different wind turbine optimization factors is wind 

velocity. Therefore, estimating wind velocity is vital 

for shaping the wind farm layout and power 

generation. Computational fluid dynamics (CFD) 

simulations were run over the rotating wind turbine 

blades to find the wind speed at various points. The 

turbine blades experienced turbulence and wake 

effects, which eventually reduced the wind speeds. 

This process took roughly eight hours to generate 

the results. To overcome this, the wind velocities at 

specific points were sampled and introduced into a 

machine-learning model. Different Surrogate 

models such as machine learning support vector 

regression, gradient boosting regression, and 

regression algorithms were formed. We resolved 

that these models can forecast wind speed inside 

wake and helped to calculate the upwind and 

downwind speeds. These models saved time for 

computationally expensive CFD and aero servo 

elastic turbine simulations. Moreover, these models 

will also help in assessing the fatigue in turbine 

blades and other failure factors. The wake effect 

through the wind turbine is shown in Fig. 1, the air 

velocity is reduced when it passes through the 

turbine blades. 

 

 
Fig. 1: Illustration of wake effect. 

 

The deprivation of fossil fuels and the intensifying 

figures of global warming and environmental 

pollution has directed the development of green 

energy resources. Due to the depletion of 

hydrocarbon deposits world is facing an energy 

crisis. This situation has amplified the importance of 
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power generation through green energy sources such 

as solar, hydropower, wind, and geothermal [2]. 

Among all the inexhaustible energy resources wind 

energy has shown remarkable advancement during 

the last ten years due to less environmental impact, 

cost efficiency, and sustainability [3]. Shakoor et al., 

[4] added that the appropriate site for the wind farm, 

improving the efficiency of wind turbines, reducing 

the wake effects within the moving turbine blades, 

and handling the technical issues are still a challenge 

for researchers and scientists. In brief, wind farm 

layout and wind turbine optimization are crucial to 

meet energy needs. 

Designing, constructing, and maintenance of wind 

turbine farms cost a lot. Thus, the construction and 

position of turbines in a wind grange, wind velocity, 

and other dependent factors should be factored in 

before the installation of wind turbines. Several 

factors may alter the power obtained from wind 

turbines such as blade radius, air density, tower 

height, and size of the rotor. The most dominating 

factor is the variable wind, which generates wake 

and turbulence effects within rotating turbines blade 

and significantly decreases the wind velocity. 

Because of this, the power extracted from the turbine 

is reduced.  

Researchers have introduced different mathematical 

models to minimize the wake effects such as 

Jensen's model, Larsen's model, and Frandsen's 

model. These models predicted that wake models’ 

results were affected by the distance between wind 

turbines. These models cast-off heuristic techniques 

and old 2D methods that do not consider the rotation 

effects in wind turbine blades so their accuracy is not 

clear. There is a need for a modern method that can 

be hybridized for getting more optimal results [4]. 

CFD is a field within the realm of fluid mechanics 

that is practiced to solve complex engineering fluid 

problems by numerical means and analytical 

methods depicted that the exact solution to turbulent 

flows is impossible but the use of large-eddy 

simulations for optimizing wind energy has resolved 

the problem to a great extent. Based on Reynolds- 

Average Navier stocks equations (RANS) 

turbulence and wake effects can be calculated and 

improved. The standard turbulence closure schemes, 

k-ε, and k-ω models have been adopted to resolve 

the three-dimensional, steady-state (RANS) 

equations [5]. Stergiannis [6] further added that 

despite these models contributing a lot to velocity 

optimization, still lost wake data when moved to 

simplified models and they are computationally 

expensive. To minimize the computational 

workload for wake simulations, the blades are 

typically accounted for using the generalized 

actuator disk method, which represents the rotor 

through forces. To handle these forces correctly, a 

meticulous numerical approach is required. At 

present, there are three methods in practice, namely 

the actuator disk, actuator line, and actuator surface 

methods. To reduce the complexity of CFD 

simulations, the wind turbine blade model was 

generalized with the actuator disk approach. Three 

methods are used including the actuator surface 

model, actuator line, and actuator disk. The actuator 

disk model seems to be more efficient and widely 

used because of less computational effort. These 

models do not simulate near wakes because they are 

unable to capture tip vortices. These uncertainties 

originated from the discretization and turbulence 

modeling errors are still a challenge [7]. 

Steve Brunton [8] concluded that real-life 

optimization problems involve expensive 

computations and they are often applicable to a 

much smaller scale. In this regard, Machine 

Learning is guaranteed to offer a compatible and 

expeditious modeling outline that can be 

implemented to sort out various complications in 

fluid mechanics models, such as shape optimization, 

turbulence closure modeling, reduced-order 

modeling, control, and experimental data processing 

by using regression algorithms, Gaussian method, 

artificial neural network, and many others standard 

algorithms. These models require a substantial 

amount of data, which may not be available. Kim 

and Boukouvala [9] found that Surrogate modeling 

is one of the effective techniques to find the best-fit 

model or approximation that an algebraic model 

lacks. Implementing these techniques to wind 

turbine layout optimization will help to diminish the 

wake effect to great extent however, these models 

are unable to solve problems as they become 

complicated and enlarged dimensionally. 

The surrogate modeling requires a large amount of 

data set that is usually not available. This paper aims 

to develop a map that will require a small data set to 

train the model. More notably, three different 

machine-learning techniques named linear 

regression, gradient boosting regression, and 

support vector regression were employed to find the 

best-fit technique for generating data in real-time, 

resolving high dimension problems, and calculating 

the error-prone in past methods. 

 

II. THE GEOMETRY OF THE BLADE AND 

FLUID 

 

 In this paper, ANSYS Fluent and Workbench 

2020 R1 were used to design the geometry of the 

blade and to perform simulations. This software 

used to be the best software to perform simulations 

and CFD calculations in industry and academia. 

ANSYS Fluent was used to run CFD calculations 

and to simulate the flow of fluid such as wind or air. 

To design the geometry of the blade and fluid, 

ANSYS DesignModeler was used. The geometry of 

the fluid was 120° or 1/3 part of a cone shape, with 

a length of 270 m and a single blade was enclosed 

inside the fluid geometry. The fluid (air) flows throw 

the cone from the inlet and upper inlet, the inlet was 
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placed 90 m away from the blade at (0, 0, 90) and 

the blade was placed at the center at (0, 0, 0). The 

blade geometry is revealed in Fig. 2. 

 

Fig. 2: Blade geometry with ANSYS Fluent 2021. 

 

A. Meshing 

After completing the geometry of the blade and fluid 

region the shape of the mesh must be finalized. 

Mesh is a process in which flow domains split into 

much smaller subdomains. These mesh subdomains 

can be 2D or 3D in shape. In this paper, simple 3D 

shapes were used. The fluid flow is governed by 

partial differential equations, and it is almost 

impossible to solve these equations analytically, 

consequently, it is crucial to split the flow domains. 

The governing equations are solved inside each 

subdomain. The precision of the outcomes and 

runtime is determined by the number of these 

subdomains, more subdomains mean solving more 

equations and longer runtime, and more accurate 

results. The mesh around the blade was much finer 

to get a more accurate effect on the wind. 

 

 
Fig. 3: Turbine blade model and fluid region 

geometry description.  

The wind flows in red arrows in the negative z-

direction from the inlet in blue and the blade is 

colored in red. The length of the cone is 270 m along 

the negative z-axis. The figure displays only a small 

subset of the entire simulation, which encompasses 

a significantly larger number of data points. 

 

B. Experimental setting 

To set up the parameters and type of the experiment 

ANSYS Fluent was used to run the experiment. A 

total of eight experiments were conducted at varying 

wind velocities ranging from 5 m/s to 19 m/s. Check 

Tables 1 and 4 for a complete list of wind velocities 

used. In ANSYS Fluent SST k-ω model was used as 

the viscous model. The boundary conditions were 

defined, and the blade was characterized as a solid 

surface. Wall is a surface to which no fluid can pass 

through it. To induce blade rotation, a frame motion 

was implemented, with the angular velocity set to a 

maximum value based on experimental data, as 

defined in [10]. For at 12 m/s speed of the fluid, the 

rotational speed of the blade was computed as 1.164. 

A complete list of wind velocities and rotational 

velocities is shown in Table 1. 

The fluid flows throw the inlet and the upper inlet in 

a negative z-direction, and the initial velocity of the 

fluid was set at one of the described velocities. After 

that, the solution method was selected, which 

defines how the experiment is going to be performed 

and iterated. Here the number of iterations was set 

to 1000 and then initiated.  

ω = 
2π

n

v

s

 

(1) 

TSR = 
U

v
  (2) 

The formulas for ω and TSR are provided below, 

with v representing the wind speed, n indicating the 

number of blades representing the length of the 

disturbed air stream, and U representing the blade's 

angular velocity. 

 

C. Sampling experiment results 

After running and completing the calculations of the 

experiment, ANSYS CFD-Post was used to get the 

results. The values changing throughout the 

experiment can be exported.  

 

Table 1: Input and output variable of CFD model. 

No. 

of  

Obse

rvati

ons 

Input  

Wind  

Velocity  

(m/s) 

Angular  

Velocity  

(rad/s) 

Tip  

Speed 

Ratio  

(TSR) 

Output                                       

Inside 

Wake  

Wind 

Velocity 

ω/ 

(rad/s) 

1 6 0.582 4.014 5.92 

2 9 0.873 4.014 8.91 

3 12 1.164 4.014 11.89 

4 15 1.164 3.212 14.9 

5 18 1.164 2.676 17.9 

 

Table 2: Input and output variables to validate the 

machine learning models. 

No. 

of  

Obse

rvati

ons 

Input  

Wind  

Velocity  

(m/s) 

Angular  

Velocity  

(rad/s) 

Tip  

Speed 

Ratio  

(TSR) 

Output                                       

Inside 

Wake  

Wind 

Velocity 

ω/ 

(rad/s) 

1 8 0.776 4.014 7.9 

2 14 1.164 3.441 13.99 

3 20 1.164 2.408 11.9 

 

In this experiment, a streamline was used to get the 

velocities. To get the absolute velocities at certain 



Technical Journal, University of Engineering and Technology (UET) Taxila, Pakistan           Vol. 27 No. 4-2022  

ISSN:1813-1786 (Print) 2313-7770 (Online) 

31 

points in the wake, velocity in the stationary frame 

was exported and the sampling method was set to 

equally spaced and the number of sampling gradient 

points was set to 100,000. The average velocity in 

the stn frame was calculated to get a single value. 

Tables 1 and 2 give the calculated values. This 

process was repeated for each value of wind 

velocity. 

 

III. SURROGATE MODELS OF MACHINE 

LEARNING 

 

 Wind-power plant optimization depends on 

the air input velocity and arrangement of turbines. 

The wake produced by the first turbine reduces the 

input velocity for the next turbine. Velocity inside 

the wake ω is calculated by performing simulations 

of CFD [11]. However, it takes approximately 8 

hours to calculate a single reading in the CFD 

model, depending upon the strength of the computer. 

Therefore, substitute models (Fig.4) are used to get 

output in real-time by using techniques of machine 

learning [12] are exposed in Table 3. 

 

 
Fig. 4: Brief visualization of machine learning 

working process which explanes each and every 

step in detail by visualizing it as flow diagram. 

 

Machine learning models are typically trained using 

a dataset that is split into two parts: the training set 

and the testing set. The training set is used to train 

the model on how to make predictions or decisions, 

while the testing set is used to evaluate the accuracy 

of the model. The accuracy of the model depends on 

the quality and quantity of the training data used. 

Larger datasets with more diverse data points can 

lead to improved accuracy. 

It is important to ensure that the training data used 

to train the model is representative of the population 

that the model is intended to predict for. Failure to 

do so may result in inaccurate predictions when the 

model is applied to new data. Hence, selecting the 

right features and data points for the training set is 

crucial for the model's performance. To summarize, 

the quality and representativeness of the training 

data are essential for the accuracy of machine 

learning models, which rely on sample data points 

for both training and testing. 

 

A. Training of surrogate models 

Substitute models were trained on the data set 

gathered from CFD model simulations Table 1. 

Three types of models were trained; Support Vector 

Machine Regression, Linear Regression, and 

Gradient Boosting Regression. Besides the training 

of substitute models, different types of errors were 

also computed to check and compare the model's 

Table 4. All the models trained well and showed 

acceptable errors in prediction revealed in Table 7. 

The comparison of errors of each model concluded 

that gradient boosting regression is the best among 

them for further predictions, as shown in Fig 5.  

Table 3: Machine Learning Substitute Models used 

for Experimentation in Jupyter (anaconda 3.7). 

 

Machine 

Learning 

Algorithm 

 

Description 

 

LR [13] 

Linear Regression describes the 

relationship between two variables 

and predicts the outcome depending 

on the training data set. 

 

SVMR [14] 

Support Vector Machine Regression 

is an example of a supervised 

machine learning algorithm that is 

commonly employed for making 

predictions of continuous values. 

 

GBR [15] 

Gradient Boosting Regression is the 

best algorithm for the prediction of 

our data with the least root mean 

square error. 

 

Governing equation of linear regression: 

ŷ=θ0+θ1x1+θ2x2+⋯+θnxn

 

(3) 

 

RMSE (X, h )=√
1

m
∑ (h  (x(i)) - y(i))

2
m

i=1

 (4) 

The predicted value is represented by ŷ, and the 

model’s constraint vector θ contains the bias term θ0 

and the feature weights θ1 to θn. The illustration 

feature vector x contains x0 to xn, with x0 always set 

to 1. The dataset contains m values, and x(i) 

characterizes the function of input while y(i) 

represents the function of output. The prediction 

function is represented by hypothesis h. 

 

Table 4: Description of errors calculated. 

Errors Description 

MAE  Mean Absolute Error 

MSE Mean Squared Error  

MAPE Mean Absolute Percentage Error 

MBE Mean Biased Error  

RS Root Square 

RMSE  Root Mean Squared Error 
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B. Validity and Accuracy of Surrogate Models 

All the substitute models of  Machine Learning were 

trained on the data obtained from the CFD model run 

in Jupyter Notebook (anaconda 3) [16,17] and their 

graphs clarified that gradient boosting regression is 

the best to predict Fig. 3.  

 

 
Fig. 5: The gradient boosting regression model was 

trained on all data sets. Scales of both axes were 

fixed in meters. While the range of axes is fixed as 

y ϵ [0, 50] were z ϵ [0,600]. Detailed iterations 

were made for more accuracy. This figure just 

demonstrates a small slice of the conical wake 

region. 

 

The performance of all models was verified on a 

data set of velocities of 6, 9, 12, 15, and 18 m/s 

which is shown in Table 1. Initially, the models were 

trained on the complete data set of the CFD model. 

Then, another value was calculated from the CFD 

model to crosscheck the prediction of the model 

Table 6. The GBR model predicted the value with 

an absolute mean error of 0.000096. 

 

 
Fig. 6: This figure shows the prediction of support 

vector machine regression on wind velocity of 17.5 

m/s after being trained on all data set points. 

 
Fig. 7: This figure demonstrates the prediction of 

linear regression on wind velocity of 18.1 m/s after 

being trained on all data set points. 

 

As the prediction error is acceptable, there is no need 

to waste 8 hours for a single value in the CFD model. 

Nevertheless, Gradient Boosting Regression is the 

best machine learning substitute model [18]; it can 

be perused for further results in Table 5 which also 

prediction of support vector machine regression can 

be seen in Fig 6. 

 

Table 5: Comparing selected input and output 

values of CFD model with all three machine 

learning models;LRM, SVMR and GBR to check 

the validity. 
No. 
of 

Obse

rvati
ons 

Input 
Air 

Veloc

ity 
(m/s) 

Output Air Velocity Inside the wake (m/s) 

CFD                         
Model 

Linear 
Regress

ion                    

Model 

Support 
Vector 

Machin

e 
Regress

ion 

Model 

Gradien
t 

Boostin

g 
Regress

ion               

Model 

1 6 5.92 5.92166
7 

6.01974
7 

5.92015 

2 9 8.91 8.90666

7 

8.90474

7 

8.91008 

3 12 11.89 11.8916

6 

11.7897

4 

11.8900 

4 15 14.90 14.9000
0 

15.0005
0 

14.8999 

5 18 17.90 17.9000

0 

17.5399

7 

17.8998 

 

Table 6: Here is the reverse engineering techn ique 

to validate the results of machine learning models. 

First prediction was made by models then it was 

calculated by CFD model to validate that how 

much the models are reliable for randome inputs. 
Input  Output  

CFD                         

Model 

Linear 

Regression                    

Model 

CFD                         

Model 

Gradient 

Boosting 

Regression               

Model 

5.5 5.43 5.472570 5.512458 5.493258 
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Table 7: Comparing the errors of all three machine 

learning models to find out which one is more 

reliable.  

 
Models  Errors 

RSE MBE MAE MSE RMS
E 

MAP
E 

Linear 

Regress

ion 

1 0 0.001

333 

3.33

E-06 

0.001

826 

0.000

159 

Support 
Vector 

Regress

ion  

0.998
219 

0.053
056 

0.133
157 

3.19
E-02 

0.178
745 

0.010
546 

Gradien
t 

Boostin

g 

Regress

ion 

1 0 0.000
096 

1.27
E-08 

0.000
113 

0.000
01 

 

IV. CONCLUSION 

 

 Wind turbine power optimization has been 

studied through different strategies involving 

different parameters and assumptions. The 

overarching variable in turbine efficiency is wind 

velocity which is studied and analyzed in this paper. 

The results showed that the amalgamation of 

machine learning and CFD produced the desired 

results with better accuracy to predict wind speed. 

Among all the three models; Linear Regression, 

Support Vector Regression and Gradient Boosting 

Regression, the last on was the most reliable model 

as it predicted the out put of 5.920159 which is more 

accurate to actual out of 5.92 calculated by CFD 

model. Moreover, Gradient Boosting Regression 

has also proved to be best with respect to error 

parameters as well with the least Mean Baised Error 

of 0. 

Models were trained on linear variables like 6, 9 12 

etc., which is easy to train and takes minimum time 

to be ready for prediction to give the best possible 

predictions. However, if models were trained on 

non-linear variables like x2, y2, and z2 and their 

inverses instead of the linear ones; x, y, and z, the 

models would take much more time to be trained. 

Moreover, it would be too complex to formulate but 

it will minimize the error ratio and gives the best 

prediction. There are even many other best ways to 

formulate the substitute models such as modeling on 

polynomial regression, logistic regression, or 

formulating decision trees, random forest, and naive 

bayes. Further, clustering as well as combining the 

models to do their best in prediction with minimized 

error. All of the above-discussed techniques belong 

to Machine Learning. Besides them, a subset of 

Machine learning called Deep Learning and ANN 

(Artificial Neural Network) can also be used. 

Nomenclature: 

U   : Angular velocity of the blade 

v    : Wind speed    

n    : Number of blades 

s    : Length of the disturbed air stream 

x(i)  : Input function 

y(i)  : Output function 

h    : Prediction function 

ŷ    : Prediction value 

θ  : Model’s parameter vector 
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