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Abstract-  To address the demands of 

contemporary research and industry, it is crucial to 

reduce computational costs and rely on open-source 

codes to simulate real-world wave propagation 

phenomena. As a response, we have developed an 

efficient solver for modeling free surfaces within the 

OpenFOAM computational fluid dynamics (CFD) 

software package. Our approach involves 

employing the finite volume method for 

discretization to solve the Laplacian of the velocity 

potential. Moreover, we have devised the necessary 

kinematic and dynamic boundary conditions to 

depict fluid behavior at the computational domain's 

boundaries and the free surface's behavior. The 

convergence analysis demonstrated the expected 

first-order accuracy of the solver as the error 

decreased with a reduction in grid size. Time 

discretization study showed good temporal 

convergence as decreasing the time step size 

resulted in lower error. Wave period comparison 

validated the numerical solution by comparing it 

with 2nd-order Stokes theory, and a close agreement 

was observed between the simulated and analytical 

wave periods. We also validated our model by 

comparing them with experimental data from 

previous studies. The comparisons showed good 

agreement between the numerical simulations and 

experimental measurements, confirming the 

reliability of the developed numerical model. It is 

pertinent to note that our solver and boundary 

conditions are novel, exclusive to our research and 

were not present in the standard OpenFOAM 

distribution. 
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I. INTRODUCTION 

 

 Waves propagation phenomena and their 

interaction with structures have received 

considerable attention in marine and coastal 

engineering [1-3]. There are three main methods for 

analyzing waves: analytical, experimental, and 

numerical. Analytical analysis involves using 

mathematical equations to determine how waves 

behave. Although this approach can provide insight 

into the underlying physics of waves, its results are 

often restricted to idealized conditions and may not 

consider real-world complexities. On the other hand, 

experimental analysis involves measuring actual 

wave behavior in the real world. While this approach 

can provide a wealth of data, it is often limited to 

specific wave conditions and conducting 

experiments for various scenarios can result in high 

computational cost[4-7]. Finally, numerical analysis 

involves using computer simulations to model wave 

behavior. This approach is capable of accounting for 

complex real-world conditions and providing highly 

accurate predictions. However, it requires 

specialized software and can be computationally 

intensive. Despite this, numerical solutions are often 

more practical in terms of cost and complexity [8-

10]. In fact, with the availability of powerful 

computational resources today, numerical modeling 

has become an increasingly popular tool for 

researchers to replicate experimental 

observations[3, 9, 11-15]. 

The natural evolution of waves depends on various 

factors such as their amplitude, wave period, and 

water depth [16-19]. Typically, these waves are 

generated offshore and propagate over long 

distances. In most cases, the effects of fluid viscosity 

are negligible throughout the propagation of waves. 

Therefore, potential flow theory is used to model 

free surface waves, assuming that the fluid flow is 

inviscid and incompressible, and the fluid is 

irrotational [20]. This theory assumes that pressure 

and gravitational forces dominate the motion of fluid 

particles. Potential flow theory is considered 

computationally efficient, as the method relies on 

solving Laplace's equation to find the velocity 

potential, which is a scalar function that describes 
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the fluid flow and is the only unknown variable in 

the model. The current research work aims to 

simulate nonlinear water waves with minimum 

numerical cost and to make the developed code 

available to the research community as an open-

source tool. 

The developed solver is implemented in the 

OpenFOAM-Extend environment, which is an 

open-source computational fluid dynamics (CFD) 

solver. OpenFOAM, which stands for Open Field 

Operation and Manipulation, is a software library 

that offers a range of numerical methods and solvers 

for simulating various physical phenomena, 

including fluid flow and heat transfer. OpenFOAM 

is widely used for CFD simulations and other multi-

physics simulations due to its open-source nature 

and versatility [21-24]. OpenFOAM is a versatile 

software library that incorporates various numerical 

methods and solvers for simulating physical 

phenomena. It supports both grid-based and particle-

based methods, such as the finite volume method, 

the finite element method, and the lattice-Boltzmann 

method. The software also provides a diverse range 

of pre-built solvers for common simulation 

problems, including turbulent flow, multiphase 

flow, and free surface flow. The software's 

flexibility is one of its main advantages, allowing it 

to be applied to a wide range of geometries, 

including complex and irregular shapes. 

Implementing boundary conditions is also 

straightforward with OpenFOAM, and it can be 

easily coupled with other numerical methods, such 

as boundary element methods. Another advantage of 

OpenFOAM is its open-source nature, making it 

freely available to users, and the source code can be 

modified and improved upon by the community. To 

learn more details about how OpenFOAM integrates 

space and time, it is suggested to read reference [2]. 

In various fields, such as aerospace, automotive, 

energy, and environmental engineering, 

OpenFOAM has become a popular software library 

for simulating fluid flow problems [21-23, 25, 11]. 

Hydrodynamic groups have also been actively using 

it for coastal-related applications. Researchers have 

developed different solvers for simulating free 

surface waves, including waves2Foam [11] and 

IHFOAM [1]. Waves2Foam actively generates 

waves and absorbs them using wave relaxation 

zones, which extends the computational domain 

over a few wavelengths, increasing computational 

expenses. IHFOAM, on the other hand, generates 

and absorbs waves actively, thus reducing 

computational costs. However, both models use the 

built-in Volume Averaged Reynolds-Averaged 

Navier-Stokes equations “interFoam” with a few 

modifications and new boundary conditions to 

generate and absorb waves. Both solvers simulate 

regular, irregular, and random waves, wave-current 

interactions, and wave-breaking phenomena. When 

dealing with big areas of space where waves don't 

become steeper or break, using these tools will lead 

to expensive computational requirements. The 

current article describes a solver developed from 

scratch using the OpenFOAM functions that will 

create and propagate waves at a lower computational 

expense until the point where the wave starts to 

overturn, which is a key element currently lacking in 

OpenFOAM for coastal engineering studies. 

To model real-world problems involving fluid flow, 

it is necessary to simulate the full Navier-Stokes 

equations for both air and water above and below the 

free surface, including the effects of aeration during 

wave impact on structures, wind effects on waves, 

and the hydro-elastic response of compliant 

structures. A domain decomposition approach is 

necessary to minimize computational costs while 

still capturing the physics of wave propagation and 

interactions with structures. This means that flow 

solvers with varying degrees of physics and 

computational overheads are required. For wave 

generation at the boundary, a scalar nonlinear full 

potential method is suitable, while a multi-fluid 

Navier-Stokes solver can resolve detailed flow 

physics in both air and water regions as waves 

approach, steepen, and break over a fixed or floating 

wave converter. Close to the wave converter where 

impacting waves may entrain air into the water 

and/or enclose an air pocket, a compressible Navier-

Stokes solver may be required. The developed 

solver in this paper is implemented in OpenFOAM 

due to its flexible framework, which allows users to 

customize existing solvers or develop new ones to 

meet their specific requirements. However, the 

developed solver cannot capture wave breaking or 

compressibility effects, which are important aspects 

of wave dynamics. To address this, the simulation 

results of the existing solver will be coupled with 

existing incompressible and compressible Navier-

Stokes solvers to capture these phenomena. A new 

boundary condition will be created to facilitate this 

coupling. 

OpenFOAM employs a method of discretizing finite 

volumes on unstructured meshes that are made up of 

various types of convex polyhedral shapes. The 

finite volume method is a mathematical technique 

employed to solve partial differential equations that 

govern the motion of fluids. These equations include 

the Navier-Stokes equations and the continuity 

equation. It is a grid-based method that partitions the 

domain of interest into a finite number of small 

control volumes, with the equations solved at the 

center of each control volume. The finite volume 

method is extensively used in computational fluid 

dynamics (CFD) simulations, and it is particularly 

suitable for modeling complex flow phenomena 

such as turbulent flows, multiphase flows, and free 

surface flows [9, 26, 2, 27]. Moreover, it is a popular 

method utilized in water wave modeling. The 

approach involves dividing the domain into a grid of 

discrete control volumes and then utilizing the 
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equations of fluid dynamics to calculate the fluid 

properties, like velocity and pressure, in each control 

volume. The method then updates the fluid's 

properties at each control volume, creating a time-

dependent simulation of the fluid's behavior. The 

finite volume method is versatile and can be applied 

to a broad range of geometries, including irregular 

and complex shapes [11, 25, 27, 28]. Furthermore, it 

permits the easy implementation of boundary 

conditions and can be coupled easily with other 

numerical techniques, such as boundary element 

methods. However, the method is computationally 

intensive, and the results' accuracy may be grid 

resolution-dependent. 

The modelling of water wave propagation is a 

complex task, owing to various factors such as the 

nonlinear behavior of water waves and their 

interactions with boundaries such as shores, boats, 

and other obstacles, which can cause unpredictable 

wave interactions. Additionally, several variables, 

such as wave height, wave period, wave direction, 

and water depth, need to be taken into account. The 

physics of wave propagation is governed by 

complex hydrodynamic equations, which include 

wave dispersion and nonlinear wave-wave 

interactions. To address these complexities, 

different models have been developed and classified 

into two main categories: "surface capturing" and 

"surface tracking". The surface capturing approach 

uses the so-called "particle-based" method, which 

captures the free surface of the water by tracking the 

motion of individual water particles. The motion of 

these particles is then used to calculate the water 

surface and wave properties such as wave height, 

velocity, and direction. One of the most well-known 

surface capturing methods is the Smoothed Particle 

Hydrodynamics (SPH) method [14], which uses a 

set of Lagrangian particles to represent the water 

surface and a set of equations to calculate the forces 

acting on these particles. These equations include 

the Navier-Stokes equations, which describe the 

motion of fluid, and the continuity equation, which 

describes the conservation of mass. The surface-

capturing approach allows for the simulation of 

complex wave behavior, such as the interaction of 

waves with obstacles, and the breaking of waves. 

Using surface capturing technique, researchers 

including [27, 29, 30] used Navier-Stokes equations 

for wave modeling that takes into account the effects 

of viscosity, compressibility, and turbulence in the 

fluid. The Navier-Stokes equations describe the 

conservation of mass, momentum, and energy of a 

fluid and are much more complex than the potential 

flow equations. 

On the other hand, researchers including [31, 16, 32, 

33] used the potential flow wave modeling approach 

which assumes the fluid to be inviscid, 

incompressible, and irrotational. Using the potential 

flow assumptions, numerical methods, such as finite 

element method [31, 16, 32, 34] or boundary 

element method [35], have been used to model the 

complex wave phenomena. These methods involve 

discretizing the flow field into a grid of points and 

using numerical algorithms to solve fluid motion 

equations. These models are computationally 

efficient, especially when compared to more 

complex models that include viscous effects (e.g., 

Navier-Stokes models). This efficiency allows for 

quick simulations of large-scale wave phenomena, 

which is especially useful in engineering and design 

applications. The surface tracking method is a 

technique that uses a "grid-based" approach to 

capture the free surface of water by solving the 

equations of motion on a fixed grid. The movement 

of the water surface is then determined by solving 

the equations at each point on the grid. A well-

known example of this approach is the Volume of 

Fluid (VOF) method [23, 1, 11, 36], which utilizes a 

scalar field to represent the water surface and track 

its evolution over time. In this method, the Navier-

Stokes equations are used to calculate the velocity 

and pressure fields, while the continuity equation is 

used to determine the evolution of the water surface. 

By employing this technique, complex wave 

behavior, such as the interaction of waves with 

obstacles and the breaking of waves, can be 

simulated. However, when trying to solve for two 

fluids within the computational areas along with an 

extra scalar transport equation, it leads to expensive 

computational requirements, and the scalar field is 

also prone to numerical diffusion. 

The Mixed Eulerian and Lagrangian method (MEL) 

is a numerical technique used in computational fluid 

dynamics (CFD) to solve fluid flow problems [37, 

38]. It combines aspects of both Eulerian and 

Lagrangian methods to capture the advantages of 

each approach. The Mixed Eulerian and Lagrangian 

method (MEL) technique combines the 

advantageous aspects of both Eulerian and 

Lagrangian approaches to solve fluid flow issues. In 

CFD, the Eulerian method is often employed to 

solve the governing equations of fluid flow on a 

fixed grid [39]. Although this approach is effective 

for examining large-scale flow phenomena, it may 

face challenges in accurately representing transient 

or highly localized events. Conversely, the 

Lagrangian method tracks individual fluid particles 

as they traverse through the flow field. This 

methodology is particularly beneficial for 

simulating particle-laden flows or highly unsteady 

flows since it follows the motion of discrete entities. 

However, it can be computationally expensive and 

less efficient at capturing global flow characteristics 

[38]. To overcome their individual limitation, we 

merge the strengths of both Eulerian and Lagrangian 

methods. We divide the computational domain into 

two regions: one where the Eulerian method solves 

the equations of fluid motion on a fixed grid (i.e., 

Laplacian equations), and another where the 
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Lagrangian method tracks the motion of individual 

fluid particles on the free surface. 

The aim of the current solver is to  improve  the 

efficiency of numerical wave simulations in marine 

environments using OpenFOAM. The solver utilizes 

the potential flow theory approach and successfully 

implements wave generation and absorption 

boundary conditions. The solver tracks the 

deformable free surface by utilizing an OpenFOAM 

solver that is typically used for simulating 

incompressible fluid flows with dynamic meshes. At 

each time step, the internal mesh adapts to 

accommodate the deformation of the free surface. 

Unlike the OpenFOAM standard distribution, this 

solver solves Laplace's equation using the finite 

volume method (FVM) and incorporates necessary 

kinematic and dynamic boundary conditions for free 

surface waves. Additionally, the solver includes 

wave generation and absorption boundary 

conditions that were developed specifically for this 

purpose. 

 

II. MATHEMATICAL FORMULATIONS 

 

 Considering an irrotational flow, which is 

also referred to as a potential flow, the flow's 

behaviour can be determined by solving a 2D 

Laplace's equation. Mathematically, it can be 

expressed as: 

∇2𝜑(𝑥, 𝑦, 𝑡) = 0  (1) 

Here, 𝜑 represents the velocity potential and 𝛻2 is 

the Laplacian operator, which measures the rate of 

change of the velocity potential in space. Solving 

Laplace's equation as in  (1) allows us to determine 

the velocity of the fluid at any point in space, which 

can be calculated using the gradient of the velocity 

potential as 𝑣 = ∇𝜑 . Once the velocity field is 

known, the pressure distribution can be found using 

Bernoulli's equation. 

 

 
Figure 1: Setup of the domain along with the 

boundary conditions, FV, which represents fixed 

value, and ZG, which represents zero gradient. 

 

In our Cartesian coordinate system, the upper-left 

corner of the undisturbed domain serves as the 

origin, as shown in Figure 1. The undisturbed free 

surface is represented by a dotted line in Figure 1, 

while the wave-like shape indicates the presence of 

a generated wave. To solve Eqn.  (1), we specify 

Neumann boundary conditions at the Inlet, Outlet, 

and Bottom Wall boundaries. At the upper boundary 

(i.e., the free surface), we apply a dynamic boundary 

condition expressed as: 

𝜕𝜑

𝜕𝑡
= −𝑔𝜁 −

1

2
∇𝜑. ∇𝜑 

 (2) 

where 𝑔 is the acceleration due to gravity, 𝜁 is the 

wave surface elevation, t is time and 𝛻  is the 

gradient operator. We apply a kinematic boundary 

condition on the free surface to make sure that it 

responds to alterations in the velocity field and to 

maintain fluid volume conservation. The kinematic 

boundary condition requires that the normal 

component of the fluid's velocity vector at the free 

surface matches the normal component of the free 

surface's velocity. This can be expressed 

mathematically as: 

𝜕𝜁

𝜕𝑡
=
𝜕𝜑

𝜕𝑦
−
𝜕𝜑

𝜕𝑥

𝜕𝜁

𝜕𝑥
 

 (3) 

Equation  (3) for the kinematic boundary condition 

can also be phrased with reference to the volume of 

fluid [29] within a system, as follows: 

𝑑𝜁

𝑑𝑡
=
𝑣. 𝑛

𝑛𝑦
 

 (4) 

In this equation, 𝑣 represents the velocity vector, 𝑛 

represents the unit normal vector, and 𝑛𝑦 represents 

the unit normal vector in the y-direction. 

However, the velocity potential and computed 

velocities are known at cell centres, while the flux is 

defined at the face centres of the control volumes. 

To appropriately update the mesh, we interpolate the 

flux 𝑣. 𝑛  from face centres to cell vertices. The 

mesh is then updated, and the solution is re-

computed using the updated mesh. Once the mesh is 

updated, we solve the dynamic boundary condition 

as in  (2) to calculate the velocity potential on the 

free surface for the subsequent time step. In the 

implemented technique, the mesh is allowed to 

deform without changing its topology. It should be 

noted that the boundaries attached to the free surface 

boundary, as shown in Figure 1, are the inlet and 

outlet, which should have unrestricted displacement, 

so a zeroGradient boundary conditions are applied. 

The bottom of the fluid domain should remain fixed, 

and thus, a fixed value boundary condition 

“fixedValue=0” is imposed. Once the boundary 

conditions for cell vertices (i.e. point displacement) 

are specified, the Laplacian solver is used for mesh 

motion by solving the Laplace equation for the 

displacement of each mesh point from its initial 

position. 

The displacement of the vertices of the free surface 

is determined by Equation  (4). In the OpenFOAM 

implementation of the Finite Volume (FV) 

methodology, mesh values are defined at vertices, 

which represent the corners of each cell in the mesh. 

However, the velocity potential and computed 

velocities are known at cell centers, while the flux is 
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defined at the face centers of the control volumes. 

To properly update the mesh, we perform an 

interpolation of the flux, represented by 𝑣. 𝑛. This 

allows for an appropriate update of the mesh. Once 

the mesh is updated, the solution is re-computed 

using the modified mesh. To calculate the velocity 

potential on the free surface for the next time step, 

we solve the dynamic boundary condition as 

described in equation  (2). In this technique, the 

mesh is allowed to deform without altering its 

topology, ensuring consistency in the connectivity 

of the mesh elements. It's worth noting that the 

boundaries attached to the free surface boundary, as 

depicted in Figure 1, are the inlet and outlet 

boundaries. These boundaries should have 

unrestricted displacement, and therefore, 

zeroGradient boundary conditions are applied to 

them. On the other hand, the bottom of the fluid 

domain is required to remain fixed, and thus, a fixed 

value boundary condition, represented by 

"fixedValue=0," is imposed. Once the boundary 

conditions for cell vertices (i.e., point displacement) 

are specified, the Laplacian solver is employed for 

mesh motion. This involves solving the Laplace 

equation for the displacement of each mesh point 

from its initial position. By solving this equation, the 

mesh points are appropriately updated, accounting 

for the displacement of the free surface vertices and 

preserving the overall topology of the mesh. 

The variables pertaining to fluid flow are computed 

at the centers of individual cells and then 

interpolated to cell vertices, which results in a saw-

tooth free surface. To enhance the precision of the 

solution, a 5-point smoother is used to adjust the 

values of the function at the nodes of the grid. The 

formula for the 5-point smoother is𝑓𝑖 = (−𝑓𝑖−2 +
4𝑓𝑖−1 + 10𝑓𝑖 + 4𝑓𝑖+1 − 𝑓𝑖+2)/16 , where 𝑓  is the 

value of the function at the required node and 𝑓𝑖−2, 

𝑓𝑖−1, 𝑓𝑖+1, and 𝑓𝑖+2 are the values of the function at 

the four adjacent nodes [24] [25]. It should be noted 

that when using the 5-point smoother, certain 

modifications are required to account for the fact 

that the values at certain adjacent nodes are not 

available, particularly at the first and last nodes of 

the grid. For instance, in the case of progressive 

waves, the values at the first node are computed 

using a 3rd-order approximation as: 

𝑓𝑖−1 = 𝑓𝑖+2 − 3𝑓𝑖+1 + 3𝑓𝑖 (5) 

𝑓𝑖−2 = 3𝑓𝑖+2 − 8𝑓𝑖+1 + 6𝑓𝑖 (6) 

Since, 𝑓𝑖−1 and 𝑓𝑖−2 are the values of the function 

out of the domain, and ,𝑓𝑖  𝑓𝑖+1, and 𝑓𝑖+2  are the 

values of the function at the first node, the adjacent 

node, and the adjacent-to-adjacent node, 

respectively. 

 

2.1. Moving boundary modeling 

In the OpenFOAM-Extend environment, we created 

a new boundary condition class to implement new 

boundaries. We defined input parameters for the 

boundary conditions, including coefficients, 

reference values, and other necessary constants, 

based on our model. We developed and 

implemented the following boundary conditions as: 

1. inlet boundary condition: The following is a 

description of the inlet boundary condition that 

we implemented in the OpenFOAM 

environment. To specify this condition, we use 

the equation: 

𝜕𝜑

𝜕𝑥
= 𝑢 = 𝑓(𝑦, 𝑡) 

 (7) 

where 𝑓(𝑦, 𝑡) is any known function. However, for 

standing wave test cases, we set 𝑓(𝑦, 𝑡) = 0, which 

corresponds to a zeroGradient boundary condition. 

This assumes that the value at the inlet is equal to 

the neighboring cell value. For progressive wave test 

cases, we impose a velocity component u in the x-

direction of the known wave theory as follows: 

𝜕𝜑

𝜕𝑥
= 𝑢 

 (8) 

The applied velocity u can be from either the Stokes 

wave theory or an experimental wave maker. The 

Stokes wave theory predicts that the wave profile is 

sinusoidal, and the wave height and wavelength are 

related to the frequency and water depth. 

Additionally, we use a ramp function to gradually 

increase the wave height of the generated waves to 

a desired level over a period of time. Currently, the 

code support sinusoidal and linear ramp functions.  

2. freeSurface boundary condition: We enforce 

both the kinematic boundary condition 

described as in  (4) and the dynamic boundary 

condition as in  (2) on this surface. 

3. bottom wall boundary condition: We impose 

the no-slip condition at this surface which 

assumes that the fluid is stationary at the bottom 

wall. 

4. outlet boundary condition: In order to avoid 

wave reflections back into the computational 

domain, which can lead to interference and 

inaccuracies in the simulation, we employ an 

absorbing boundary condition. This condition 

facilitates the smooth exit of waves from the 

domain without reflection, effectively 

absorbing them as they leave the modeled 

region. For this purpose, we implemented the 

Sommerfeld condition. 

𝜕𝜑

𝜕𝑡
+ 𝑣𝑝ℎ𝑎𝑠𝑒

𝜕𝜑

𝜕𝑛
= 0 

 (9) 

In this equation, n represents the normal vector 

pointing outward from the outlet boundary's surface, 

and 𝑣𝑝ℎ𝑎𝑠𝑒  refers to the wave's phase velocity. The 

parameter 𝑣𝑝ℎ𝑎𝑠𝑒 is determined by the linear 

harmonic wave velocity equation 𝑣𝑝ℎ𝑎𝑠𝑒 =

√𝑔 × tanh(𝑘𝐻) /𝑘 , where H signifies the water 

depth and k represents the wave number. The newly 

developed boundary conditions are designed to be 
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modular and require only the input of wave 

amplitude, wave period, and the time required for 

full development. The wave length and wave 

number are then computed using wave dispersion 

relations. As a result, switching to different 

boundary conditions only requires changing the 

expression and the necessary variables for 

initialization. To validate these boundary 

conditions, we compared simulation results with 

analytical and experimental data, which are 

presented in the Results and Discussions section. 

 

2.2. Sequence of the Solution Procedure of the 

solver 

The steps for implementing the potential flow solver 

in OpenFOAMfrom tn to 𝑡𝑛+1 are as follows. 

1. Create the grid. 

2. Apply the necessary boundary conditions on the 

computational domain. 

3. Calculate the velocity potential by solving 

Laplace's equation. 

4. Compute velocities at the centers of cells and 

fluxes at the centers of faces. 

5. Find the updated shape of the surface of the 

fluid by solving  (4) that describes the behavior 

of the fluid at the boundary. 

6. Based on the free surface elevation computed in 

the previous step (step 5), update the grid. 

7. Solve  (2) that describes the dynamic boundary 

condition at the free surface on the updated grid. 

This calculation provides the velocity potential 

on the boundary for the next time step. Adjust 

the boundary conditions for the remaining three 

boundaries based on the updated information. 

8. To progress the solution in time, repeat the 

aforementioned steps (steps 4-7) for each time 

step. 

Moreover, to run a case(example) using the current 

solver in OpenFOAM, one will need to follow these 

steps:  

1. Set up the geometry: The first step is to create 

the 3D geometry of the domain that includes the 

fluid and the free surface. This can be done 

using a CAD software or OpenFOAM's built-in 

meshing tools 

2. Mesh the domain: The next step is to generate a 

suitable mesh that will be able to resolve the 

wave features. This can be done using 

OpenFOAM's meshing tools, such as 

snappyHexMesh or Gmsh. 

3. Set up the case: The next step is to set up the 

case by defining the solver which is named as 

''potDyMFoam", time and spatial discretization 

schemes, initial and boundary conditions. 

4. Run the simulation: The simulation is run by 

using the command in a terminal window 

``potDyMFoam". The solver solves the Laplace 

equation for the velocity potential, and 

calculates the velocity fields by the gradient of 

velocity potential and then pressure using the 

Bernoulli's equations. 

5. Post-processing: Once the simulation is 

complete, the results can be post-processed to 

visualize the wave height, velocity field, and 

pressure distribution. OpenFOAM provides 

several post-processing tools, such as 

ParaView, foamToVTK, and foamToSurface. 

 

III. RESULTS AND DISCUSSION 

 

 The primary objective of developing the 

current solver within the OpenFOAM environment 

was to leverage the built-in capabilities of 

OpenFOAM and enable seamless coupling with 

existing incompressible and compressible Navier-

Stokes solvers, thus encompassing a wide range of 

wave conditions. In order to demonstrate the 

effectiveness of the newly created solver and its 

associated boundary conditions, several simulations 

were conducted. These simulations were performed 

on a workstation equipped with an Intel Core i7-

4790 CPU, 16 GB of memory, and a 3.6 GHz Power 

8 processor. By utilizing the computational 

resources and capabilities of this setup, we were able 

to validate the functionality and performance of the 

solver and its boundary conditions. We validated the 

accuracy of our developed numerical model by 

comparing its results with theoretical solutions, 

published numerical simulation results, and 

experimental data. Our goal was to establish the 

numerical model's reliability and accuracy. The 

validation process consisted of several steps, 

including convergence analysis in space and time, 

wave period comparison, comparison of the 

simulation results for standing water waves, 

progressive waves, and finally, comparison with 

experimental data. For all our simulations, we 

employ the Crank-Nicolson time integration method 

to handle the wave elevation equations, while we 

utilize the Euler time integration method for the 

remaining equations. 

 

3.1. Convergence in Space and time 

To ensure independence from grid size, we 

conducted a simulation of a sinusoidal wave. The 

simulations were conducted with a mean water 

depth of H = 0.8 m, and the wave characteristics 

were set as follows: amplitude a = 0.01 m and 

wavelength λ = 1.0 m. The simulation was carried 

out using several regular grids, as described in 

Table-1, using the function 𝜁 = 𝑎sin⁡(𝑘𝑥)  and a 

dimensional time step of ∆t = 0.005 s. We plotted 

the error on the y-axis and the grid size on the x-axis, 

both in a logarithmic scale, as shown in Figure 2. We 

calculated the error as the difference between the 

numerical and analytical solutions. As indicated by 

the plot, the error decreases with a reduction in the 

grid size, demonstrating the expected first-order 

accuracy.
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Table 1: The number of different meshes used. 

Cases Grid size 

Grid-1 13 x 11 x 1 

Grid-2 20 x 17 x 1 

Grid-3 33 x 26 x 1 

Grid-4 49 x 39 x 1 

Grid-5 75 x 59 x 1 

Grid-6 113 x 89 x 1 

Grid-7 169 x 134 x 1 

Grid-8 211 x 167 x 1 

Grid-9 253 x 201 x 1 

 

 

Figure 2: The plot shows the error as a function of 

the number of grid points in the x-direction. 

 

We conducted a time discretization study using 

Grid-4, which comprises 49 points in the x-direction 

and 39 points in the y-direction. The simulation 

utilized a sinusoidal wave with a mean water depth 

of H = 0.8 m, and the wave characteristics were set 

as follows: amplitude a = 0.01 m and wavelength λ 

= 1.0 m. The simulation was carried out for different 

time step sizes, namely ∆t = 0.025, ∆t = 0.0125, ∆t 

= 0.00625, and ∆t = 0.003125. The L1-error was 

calculated for each time step size, and the results 

were plotted against the time steps in Figure 3. The 

graph shows that decreasing the time step size 

results in lower error, indicating that the simulation 

achieves good temporal convergence.  

 

 

Figure 3: Change in error estimate with time step. 

3.2. Wave Period Comparison 

We also made wave period comparison for the 

developed numerical solution. We obtain the 

numerical solution for different kinds of waves 

covering a range of water depths from shallow to 

deep. We calculated the wave period of the 

numerical solution by identifying the time interval 

between two consecutive wave peaks. We then 

compared the results we obtained with the wave 

period calculated using 2nd-order Stokes theory. We 

examined two distinct wave amplitudes, namely a = 

0.005 m and 0.01 m, while keeping the wave length 

constant at 𝜆⁡= 1.0 m. We gradually altered the 

mean water depth and recorded the wave periods 

from the resulting simulations. Figure 4 shows a 

comparison between the wave periods obtained and 

the analytical values, plotted against the mean water 

depth. The depicted plot indicates a close agreement 

between the wave periods obtained from the current 

numerical scheme and those predicted by the 2nd-

order Stokes theory. 

 

 

Figure 4: The plot shows how the wave period 

varies with the mean water depth, with the 

wavelength used as a normalizing factor. 

 

3.3. Standing Waves 

Standing water waves are a common occurrence in 

bodies of water such as lakes, rivers, and oceans. 

These waves can be generated by several factors, 

such as wind, tides, and the interaction of waves 

with obstacles like breakwaters, piers, and other 

structures. Accurate simulation of standing water 

waves is crucial for predicting the behavior of more 

complex phenomena and for designing structures, 

bridges, and ships. It can also lead to improved 

models for a range of physical phenomena, making 

it an essential area of study in fluid dynamics. 

Understanding the behavior of standing water waves 

is, therefore, critical for advancing the field of fluid 

dynamics. 

We utilized a mathematical function 𝜁, also known 

as the wave profile or waveform, to simulate 

standing waves. The initial shape of the free surface 

was specified using this function, as depicted in 

Figure 5. The test cases were chosen to have 
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relatively large wave amplitudes and small water 

heights, enabling us to observe nonlinear effects. We 

used a wave profile based on the 2nd-order Stokes 

theory [40] for this purpose. 

𝜁(𝑥, 𝑡)

= 𝑎cos(𝑘𝑥) cos(𝜔𝑡)

+
𝜋𝑎2

𝜆
[cos2(𝜔𝑡) −

1

4cosh2(𝑘𝐻)

+
3cos⁡(2𝜔𝑡)

4sinh2(𝑘𝐻)
] cos⁡(2𝑘𝑥) 

 (10) 

 

𝜕𝜑

𝜕𝑥

= (
𝐻

2

cosh(𝑘(𝑦 + ℎ))

sinh(𝑘ℎ)
cos(𝑘𝑥 − 𝜔𝑡)

+
3

16
ℎ2𝜔𝑘

cosh(𝑘(𝑦 + ℎ))

sinh(𝑘ℎ)

cosh(2𝑘(𝑦 + ℎ))

sinh3(𝑘ℎ)
) 

cos2(𝑘𝑥 − 𝜔𝑡) 

 

(11) 

Here, a is the amplitude of the wave, k is the wave 

number (2𝜋 𝜆)⁄  ,  is the angular frequency 

(2𝜋 𝑇)⁄ , and T is the period of the wave and h is the 

height of the wave at position x and time t.  The 

wave profile used in our simulation takes into 

account nonlinearity and dispersion effects, which 

give rise to a wave shape different from that of a 

purely sinusoidal wave predicted by linear wave 

theory.  

We consider a wave with amplitudes of 0.01 m and 

0.02 m, a wavelength of 1.0 m, and a mean water 

depth of H=0.1 m, as studied by Santos and Greaves 

[32]. To generate the initial profile for the standing 

wave, we utilized the "arc" utility, which is a built-

in tool in OpenFOAM. This utility writes the initial 

profile based on known wave theories over all grid 

points of the free surface boundary. The initial point 

displacements are then extracted from the grid 

points and saved in the pointDisplacement file, 

which is located in the 0 folder of the case directory. 

Once the initial values for the velocity potential and 

the initial shape of the standing wave are set, we run 

the "potDyMFoam" solver to simulate the wave 

motion over the run time of the case. 

 

 

Figure 5: The starting shape of the stationary wave 

Figure 6 displays the changes over time in the height 

of the wave at the halfway point of the free surface 

boundary, and also shows the results obtained from 

the linear and 2nd-order Airy wave solutions to 

compare with the simulation results. The wave 

elevation is nondimensionalized by the wave 

amplitude, providing a relative measure of the wave 

elevation compared to the amplitude. As shown in 

Figure 6(a) and Figure 6(b), this 

nondimensionalization results in values between -1 

and 1, irrespective of the actual wave amplitude. 

Similarly, we nondimensionalized time by dividing 

it by a characteristic time scale, such as the wave 

period, which can be determined from the relation 

𝑇 = 2𝜋 𝜔⁄ , where 𝜔 = √𝑔 × 𝑘 × tanh⁡(𝑘𝐻). The 

simulation results accurately predict the general 

behavior of the wave, as predicted by the theoretical 

solutions. However, the simulations differ from the 

theoretical solutions in the crest level, where the 

theories fail to capture the high crest. The 

simulations show much larger crests and flatter 

troughs than a linear wave with the same amplitude 

due to the nonlinear interactions between the 

different wave components. Santos and Greaves 

[19] (Fig. 13) also observed similar nonlinear 

behavior. In a nonlinear wave, the crest can become 

steeper, and eventually break, resulting in a much 

larger wave. The nonlinear interactions between the 

different wave components lead to complex and 

unpredictable wave behavior [41]. 

 

 

(a) 

 

(b) 

Figure 6: A comparison of the time trace history 

between the current simulations and the predicted 

theories of the free surface elevation. 

 

3.4. Progressive Waves 

Regular water waves, also known as linear waves, 

are a type of water wave that follows the linear wave 

equation, which describes the small amplitude, long 

wavelength waves that are commonly found in 

oceans and other large bodies of water. These waves 
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have a sinusoidal shape, with a constant amplitude 

and wavelength, and they travel in a particular 

direction. Regular water waves can be characterized 

by several parameters, including wavelength , 

wave period T, wave frequency f, wave speed c, and 

wave height H. The wavelength, period, and 

frequency are related by the equation 𝑐 =
𝜆 𝑇 = 2𝜋𝑓⁄ . In order to simulate progressive waves, 

it is necessary to specify the inlet boundary as the 

location where the waves are generated and the 

outlet boundary as the location where the waves exit 

the domain. In our simulations, we utilized an inlet 

boundary condition  (7) and a Sommerfeld 

condition  (9) to achieve this. Various test cases 

with different wave heights were simulated, and for 

validation purposes, two test cases are presented 

with their corresponding data in Table 2. To avoid 

interference between incoming and reflected waves 

in the computational domain, the tank length was set 

to L=10 m for both test cases. At the inlet boundary 

of the domain, the horizontal component of the 

velocity was determined based on the Stokes-I 

theory. The wave number k and angular frequency  

of the wave were calculated using the linear 

dispersion relation 𝜔2 = 𝑔 × 𝑘 × tanh⁡(𝑘ℎ) . To 

study the wave's behavior over time, free surface 

elevation was measured at three different locations: 

7.5 m, 7.87 m, and 8.424 m from the inlet boundary. 

 

Table 2: Results obtained for a progressive wave. 

 

Wave 

amplitude 

(cm) 

Water 

depth 

(cm) 

Time 

period 

(sec) 

Case 1 2.5 50 3.0 

Case 2 4.5 100 2.0 

 

Figure 7 and Figure 8 depict the variation in wave 

amplitude over time. The x-axis represents time in 

seconds, while the y-axis represents wave amplitude 

in meters. In Figure 7, the wave has an amplitude of 

2.5 cm, a water depth of H=50 cm, and a time period 

of T=3.0 seconds. In Figure 8, the wave has an 

amplitude of 4.5 cm, a water depth of H=10 m, and 

a time period of T=2.0 seconds. The wave elevation 

is also plotted based on Stoke's 1st and 2nd-order 

theories. The numerical simulations for the 

considered wave parameters generally follow the 

theoretical trends in terms of time period and phase, 

but the theories do not capture the non-linear 

interaction between different wave components. In 

Figure 7(a), (b), and (c), the wave crests and troughs 

are symmetric and sinusoidal according to Stokes 

First theory (linear theory), represented by a red line. 

The wave profile remains unchanged as the wave 

travels, and the crest and trough are always aligned 

with the direction of wave propagation. In contrast, 

Stokes 2nd theory, represented by the blue dashed 

line, and the current simulations, represented by the 

black solid line, do not necessarily produce 

symmetric or sinusoidal crests and troughs. The 

non-linear interaction between different wave 

components can cause the wave profile to become 

distorted, with the crest becoming steeper and 

narrower while the trough becomes wider and 

flatter. This process is known as wave steepening, 

and it can lead to the formation of breaking waves 

[41]. 

 

 

(a) 

 

(b) 

 

(c) 

Figure 7: Comparison of the free surface elevation 

obtained from the first and second Stokes theories 

with the results obtained from current simulations 

at three different locations (a) 7.5 m, (b) 7.87 m 

and (c) 8.24 m from inlet domain, where a=6 cm 

and T=1.5 sec. 

 

(a) 

 

(b) 
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(c) 

Figure 8: Comparison of the free surface elevation 

obtained from the first and second Stokes theories 

with the results obtained from current simulations 

at three different locations (a) 7.5 m, (b) 7.9 m and 

(c) 8.42 m from inlet domain, where H=6 cm and 

T=2.0 sec. 

 

For the second test case, we modified the wave by 

increasing its wave amplitude to 4.5 cm and 

decreasing the time period to T=2.0 seconds. These 

modifications can make higher-order waves more 

susceptible to breaking and losing their harmonic 

structure. The wave crest in Figure 8(a), (b), and (c) 

is steeper than those in Figure 7(a), (b), and (c) due 

to the shorter wavelength, which causes an increase 

in the wave profile's steepness. The current 

simulations accurately predict this nonlinear 

behavior that the theories cannot predict. It is crucial 

to capture this nonlinear behavior as the steeper 

wave profile can lead to easier wave breaking, 

causing the higher-order waves to dissipate quickly. 

To further verify and validate our current numerical 

simulation results, we conducted a comparison with 

Feng Gao's experimental data [4]. Feng Gao placed 

three gauges in the flume to measure wave elevation 

at positions 0.55 m, 3.55 m, and 5.45 m. The length 

of the wave tank was maintained at 8.85 m to match 

the experimental conditions, with water depth H set 

at 0.28 m. Previous full Navier-Stokes (NS) 

computations were also conducted for this test case 

by Qian, Causon, Mingham and Ingram [42] , as 

well as Bai, Mingham, Causon and Qian [43] . The 

wave amplitude was set to 0.025 m and the wave 

period T was set to 1.0 seconds, with the following 

mathematical expression used for wave generation. 

𝑢 = 𝑎𝜔sin⁡(𝑘𝑥 − 𝜔𝑡) (12) 

In these simulations, we used a linear ramped 

function that was added to the system from t=0 to 

t=T. To ensure both accuracy and efficiency of the 

current solver, we utilized both coarser mesh (354 x 

17 x 1) and fine mesh (708 x 33 x 1) and compared 

the obtained solutions at the same locations as the 

experiment (Figure 9). The purpose of using 

different mesh sizes was to verify the solver's 

performance. The experimental data was plotted in 

red, while the finer mesh and coarse mesh were 

plotted in black solid line and blue dotted line, 

respectively. The computational time for the coarse 

grid was 12 minutes, while the fine mesh required 

20 minutes. The results of the current solver showed 

excellent agreement with the experimental data, 

very similar to that of Navier-Stokes simulations 

conducted by Qian Causon, Mingham, and Ingram 

[42] (Fig. 7(a)) and Bai, Mingham, Causon, and 

Qian [43] (Fig. 13(a)). The solver successfully 

captured the steeper wave crests, even with the 

coarsest discretization used. Although the free 

surface was not accurately captured at gauge no. 3, 

the general trend and nonlinear behavior were 

adequately represented. Gauge 1 and 2 showed 

excellent agreement with the observations, whereas 

gauge 3 showed some differences, particularly in 

terms of dispersion. A possible explanation for this 

discrepancy could be the change in celerity due to 

the higher wave amplitude or the discretization near 

the reflecting wall. Considering the provided 

dimensional characteristics of the wave flume by 

Feng Gao's [4] and the wave properties, it appears 

that the flow in the flume is in the laminar regime. 

This suggests the presence of wall viscous effects, 

which could potentially explain any discrepancies 

observed between our simulations and the 

experimental data. 

 

 

(a) 

 

(b) 

  

(c) 

Figure 9: The current numerical solver for free 

surface elevation is being compared with 

experimental observations at positions (a) Gauge 1 

at 0.55 m, (b) Gauge 2 at 3.55 m, and (c) Gauge 3 

at 5.45 m. 
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IV. CONCLUSIONS 

 

 In this paper, we have developed a 

methodology that is able to simulate fluid flow using 

the OpenFOAM-Extend environment. The method 

is based on the potential flow solver that uses 

Laplace's equation to determine the velocity 

potential at any point in space. The simulation of 

standing water waves with relatively large wave 

amplitudes and small water heights enables the 

observation of nonlinear effects, making it an 

essential area of study in fluid dynamics. 

Subsequently, we compared model results with 

experimental data and obtained excellent agreement, 

demonstrating the successful implementation of the 

model. Our findings suggest that the current solver, 

along with the boundary conditions, is efficient for 

modeling real-life applications where the flow 

remains irrotational, inviscid, and incompressible. 

To facilitate collaboration and knowledge transfer 

and to improve the solver further, the developed 

model and corresponding boundary conditions will 

be released as open source in the OpenFOAM 

environment. In the future, our focus will be on 

developing a numerical wave tank that achieves a 

balance between computational efficiency and 

accuracy. To achieve this, we plan to employ 

different solvers for different regions within the 

tank, allowing us to maintain the required level of 

detail while optimizing computational resources. 
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