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Abstract-  Today, IoT devices contribute to the 

creation of intelligent environments, encompassing 

structures like smart buildings, hospitals, banks, 

houses, and offices. Data acquired through sensors 

and devices often falls prey to corruption or da mage, 

resulting in anomalous data. These anomalies have 

a substantial influence on the functionality of smart 

cities. This research specifically targets anomaly 

identification within smart cities. The purpose of the 

study is to examine the performance of machine 

learning algorithms and identify an optimal machine 

learning algorithm that is suitable for all settings of 

IoT-enabled smart cities. The research findings 

depict that Naïve Bayes achieved the highest 

average accuracy of 91.75% across all IoT-enabled 

settings of smart cities.  
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I. INTRODUCTION 

 

 A common strategy for addressing the issues 

brought on by increasing urbanization and 

sustainability is the creation of smart cities. Smart 

cities gather and analyze data from several sources 

to give citizens and government officials insights. 

They do this by utilizing technology like machine 

learning algorithms, big data analytics, and Internet 

of Things (IoT) sensors. An important component of 

smart cities is anomaly detection, which is the 

process of finding odd or unexpected patterns or 

occurrences in data. Because machine learning can 

recognize trends and identify abnormalities in large-

scale, complicated data, it has become a potent tool 

for anomaly detection in IoT-enabled smart cities. 

The accuracy and efficiency of smart city 

applications can be significantly impacted by 

anomalies in the data [1].  

To harness the potential of smart cities, however, 

challenges must be addressed. Privacy and security 

vulnerabilities necessitate robust protocols. 

Algorithmic accuracy must be ensured, scaling 

capabilities enhanced, and collaboration among 

researchers, officials, and technology companies 

must be fostered. Previous studies are focused on a 

limited set of datasets, including network tracking, 

WI-FI router signal strength (RSS) for indoor 

localization, Intel laboratory, Yahoo, Process miner, 

SWaT, and household, all connected to different 

aspects of smart cities [1-5]. However, as of now, 

there isn't a  single dataset that covers the complete 

analysis of an entire smart city. Previous studies on 

using machine learning for spotting unusual events 

in smart cities reveal a gap, not enough work has 

been done using various IoT datasets relevant to 

these urban environments [4]. While a few 

researchers have looked into how machine learning 

might help in future smart cities, they've faced a 

roadblock. They couldn't experiment with different 

datasets because these datasets are hard to find [4] 

[5]. Unfortunately, getting hold of datasets linked to 

smart cities isn't simple, and that's why some 

researchers have had to create their own simulated 

datasets. However, they haven't really shown clearly 

how they made these datasets in their studies [5]. 

This points out a need for datasets that are more 

complete and easy to get for smart cities, along with 

a common method for making such datasets. Having 

these datasets and methods could really help 

researchers create and test algorithms for finding 

anomalies that match the specific challenges and 

traits of smart cities. Secondly, the devices in smart 

cities have limited capability for computation, 

power consumption, and storage. Therefore, it is 

indispensable to design smart city applications 

based on such algorithms that are simple, 

computationally efficient, and optimized for 

handling resource constrains. 
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In the light of aforementioned research gap, the first 

objective of this research work is to contribute 

significantly by employing multiple IoT datasets to 

unearth anomalies within distinct smart city fa cets, 

as illustrated in Figure 1. Encompassing areas like 

Agriculture, Household, Transport, Weather 

Forecasting, Commercial, Network Tracing, 

Laboratory, and Healthcare Monitoring, the 

proposed approach covers a comprehensive 

spectrum of smart city components. We deploy 

diverse machine learning techniques, such as Naïve 

Bayes (NB), Decision Tree (DT), K-nearest 

neighbors (K-NN), Random Forest (RF), and 

Gradient Boosting evaluating their performance 

across metrics such as accuracy, recall, precision, 

and F1-score. In light of the existing literature's 

limited scope, which predominantly focuses on 

isolated smart city components, this research strives 

for comprehensive coverage.  

The second objective of this research work is to 

identify an optimal machine learning algorithm for 

anomaly detection in smart cities. This algorithm 

should prioritize simplicity, avoiding excessive 

computational complexity, while demonstrating 

robustness in handling noisy and imbalanced 

datasets. As we navigate through the subsequent 

sections, section 2 provides literature review of 

existing research pertaining to anomaly detection in 

smart cities. 

 

 
Figure 1. Components of a Smart City 

 

Section 3 outlines the methodology employed in this 

research, while section 4 presents the research 

findings and discussion to discuss the outcomes. 

Finally, section 5 concludes the study, offering 

insights into potential future research directions 

within this dynamic field. 

 

II. LITERATURE REVIEW 

 

 IoT systems offer wide-ranging utility across 

domains such as public safety, logistics, home 

automation, healthcare, and environmental 

monitoring. However, the susceptibility of crucial 

infrastructures like smart grids, industrial systems, 

and transportation networks to attacks raises 

concerns for cities and nations. In this section, a 

brief review of the Machine Learning (ML) 

techniques employed for anomaly detection in 

individual IoT application is discussed [23]. 

Notably, Supervised ML algorithms like Naïve 

Bayes (NB), Decision Tree (DT), Random Forest 

(RF), Support Vector Machine (SVM), Logistic 

Regression, and Artificial Neural Network are 

applied to classify anomalous data. Additionally, 

hybrid or ensemble techniques are proposed by 

certain researchers to enhance detection approaches. 

Guo [2] introduced a novel unsupervised approach, 

tailored for anomaly detection in IoT systems using 

multidimensional time-series data. They introduced 

a GRU-Gaussian Mixture Variational Autoencoder 

(VAE) that incorporates a GRU-based deep latent 

embedding to capture temporal associations within 

the data. Employing a Gaussian Mixture model with 

a sequence of Gaussian distributions [20-22] 

facilitated enhanced understanding of the latent 

space. By introducing a Bayesian Inference 

Criterion (BIC) -based model selection approach, 

accuracy of the Gaussian Mixture latent space is  

augmented. Experimentation across four publicly  

available IoT datasets emphasized the effectiveness 

of the proposed system. Nusaybah Alghanmi [3] 

proposed the Hybrid Learning Model of Clustering 

and Classification for automatic labeling and 

anomaly detection. Firstly, this model classifies data 

into normal and defected data (which consist of 

anomalies) by using Hierarchical Affinity 

Propagation (HAP) unsupervised clustering. 

Secondly, labeled data is used for training in DTs 

and classify unseen future data. Precision, recall, 

and area under the precision recall curve and false 

positive rate are used and gives results 1.8, 1.8, 1.6, 

and 1.8 respectively. Two datasets considered here 

in this research, first is (LWSNDR) that is Labelled 

wireless sensor network data repository and second 

is Landsat Satellite are used in this paper. The result 

shows that HLMCC labeled data automatically and 

gives higher ranks in contrast of other models. 

Reddy [4] set the purpose of this research is to 

present an unique deep learning-based framework 

using a  neural network dense random technique to 

identifying and categorizing anomalous from into 

the normal behaviors in the Internet of Things based 

on the type of attack. When compared to deep 

learning models, machine learning algorithms have 

a lower likelihood of exploring performance. It has 

been observed that deep learning neural network 

architectures conduct computations more efficiently 

and produce the appropriate outcomes for category 

threats. With the objective to figure out seven 

classified attacks that were found in the data set of 

traffic traces from the Distributed Smart Space 
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Orchestration System, this work aims to give a 

complete evaluation of experimentation 

performance and deep learning neural network 

design. The result shows that Deep Neural Network  

(DNN) achieves 98.29% accuracy, 97% Precision , 

98% Recall, 98% F1-Score. 

Bellini [5] proposed the solution for detection of 

anomalies. Researcher used Gradient Boosting 

technique using the CatBoost Algorithm [24-25]. 

Data is created by own researcher on snap4city 

platform by considering some air pollution and 

traffic related sensors. The objective of the 

researcher in this paper is to automatic detection of 

anomalies. Proposed algorithm achieve the better 

performance in accuracy. The result shows that 

proposed algorithm achieves 0.969% accuracy, 

0.871% precision, 0.9225% F1 score. Proposed 

algorithm is not effective for sensors that is 

revolutionary change with time, and it require 

periodic training. 

Mansoor [6] introduced an IF-Ensemble model 

utilizing a composition of ensemble, supervised, and 

unsupervised machine learning techniques for Wi-Fi 

indoor localization through RSS evaluation. The 

strategy exhibited a 97.8% accuracy, nearly 2% 

higher than previous accuracy rates, improving 

localization accuracy within indoor environments. 

Mahmudul Hasan [7] explored various machine 

learning approaches for identifying threats and 

anomalies in IoT systems. This involved employing 

ANN, DT, Logistic Regression, RF, and (SVM). 

Using evaluation metrics like accuracy, recall, 

precision, F1 score, and area under the receiver 

operating characteristic curve, this study conducted 

five-fold cross-validation on Kaggle's dataset. 

Results indicated significant accuracy for DT, RF, 

and ANN, with RF outperforming others in various 

metrics. Chunyong Yin [9] emphasized deep 

learning's role in anomaly detection. They integrated 

Convolutional Neural Network (CNN) and Long 

Short-Term Memory (LSTM) based recurrent 

Autoencoder for feature extraction from raw data. 

To overcome limitations, a  two-stage sliding 

window was implemented in data preprocessing. 

The model demonstrated improved accuracy, recall, 

precision, and F1-score. Di Wu [10] introduced the 

LSTM-Gauss-NBayes model, combining LSTM-

ANN and Gaussian Bayes for anomaly detection. 

Using real-time series datasets, the model exhibited 

enhanced accuracy, recall, precision, and F1-score 

compared to existing methods. Ullah [11] proposed 

a Convolutional Neural Network (CNN) model for 

IoT network anomaly detection, categorizing binary 

and multiclass anomalies. A dataset was enhanced 

to create a comprehensive method, yielding high 

accuracy for different CNN models. Other research 

efforts focused on various aspects. Liu [14] targeted 

‘On’ and ‘Off’ attacks within industrial IoT, while 

Anthi [15] employed ML classifiers for intrusion 

detection. Ukil [16] explored IoT-based healthcare 

analytics, and Pajouh [17] proposed a two-tier 

classification module for intrusion detection. Diro  

[18] assessed shallow and deep neural networks, and 

Usmonov [19] proposed digital watermarks for IoT 

security.  

The research by M.M. Inuwa emphasizes the 

importance of anomaly detection in IoT systems and 

the potential of machine learning (ML) to address 

associated security challenges.  

The limitations of traditional techniques is given. 

The advancements in deep learning, and federated 

learning is highlighted. However, only two IoT 

datasets are considered. Based on this the research 

findings for some major IoT systems in a smart city 

cannot be generalized [61]. A comparison of IoT 

anomaly detection in IoT systems using ML 

Classifiers is provided in table 1. 

 

Table 1. Comprehensive Comparison of ML 

Classifiers' Performance on Trained and Tested IoT 

Datasets 
Reference Technique Dataset Objectives Results Limitations\ 

Gaps 

Guo  
[2] 

GGU-VAE 
(GRU-based 

Gaussian 

Mixture 
VAE), BIC-

based model 

selection 

1. Intel 
Berkeley 

Research 

Lab 
Dataset 

2. Yahoo’s 

anomaly 
detection 

dataset. 

3. Process 
Miner’s 

rare event 

detection 
dataset. 

4. Secure 

Water 
Treatment 

(SWaT) 

dataset 

To propose 
an 

unsupervise

d anomaly 
detection 

scheme for 

multimodal 
time series 

data in IoT 

systems that 
achieves 

high 

performanc
e and caters 

issues 

related to 
high 

dimensional

ity, and 
multimodali

ty.   

Accura
cy: 

Dataset 

1:98% 
Dataset 

2: 96% 

Dataset 
3: 84% 

Dataset 

4: 87% 

The approach 
relies on 

generic 

datasets which 
may not be 

specifically 

tailored to the 
IoT 

environment 

or smart cities, 
potentially 

limiting the 

direct 
applicability 

and relevance 

of the findings 
to these 

contexts. 

Reddy 

[4] 

Deep neural 

network dense 
random 

technique 

The DS2OS 

dataset, 
sourced from 

Kaggle, 

comprises 
357,920 

instances of 

data, each with 
13 features. 

Improving 

the 
effectivenes

s of 

anomaly 
detection 

within smart 

city 
environmen

ts 

High 

accurac
y 

(98.29

%), 
precisio

n 

(97%), 
recall 

(98%), 

F1-
Score 

(98%) 

This paper 

focuses on 
future smart 

cities, 

specifically 
exploring 

network 

tracking 
within a single 

area. 

However, for a 
comprehensiv

e 

understanding 
of future smart 

cities, it is 

essential to 
incorporate 

diverse 

datasets from 
various IoT 

fields. 

Belli

ni [5] 

Gradient 

Boosting 
technique 

using the 

CatBoost 
Algorithm 

Custom-

created dataset 
on snap4city 

platform 

Automatic 

detection of 
anomalies in 

IoT 

infrastructur
e 

High 

accurac
y 

(97%), 

modera
te 

precisio

n 
(87%), 

F1 

score 
(92%) 

Not effective 

for sensors 
with 

revolutionary 

changes, 
requires 

periodic 

training 

Mans

oor 

[6] 

IF-Ensemble 

(Isolation 

Forest 
ensemble), 

supervised and 

unsupervised 
ML methods 

Wi-Fi indoor 

localization 

dataset from 
UCI 

repository 

Detect 

outliers for 

Wi-Fi 
indoor 

localization 

Accura

cy 

(97.8%
) 

The approach 

relies on 

generic dataset 
which may not 

be specifically 

tailored to the 
IoT 

environment 

or smart cities. 
Limited to 

indoor 

localization, 
performance 

dependent on 

dataset quality 
and 

preprocessing 

Hasa

n [7] 

Various 

supervised 
ML 

algorithms 

The DS2OS 

dataset, 
sourced from 

Kaggle, 

Compare 

ML 
techniques 

for attack 

Accura

cy 
(99.4%

), but 

Lack of 

proposed 
anomaly 

detection 
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(ANN, DT, 

LR, RF, SVM) 

comprises 

357,920 
instances of 

data, each with 

13 features. 

detection in 

IoT systems 

varied 

perform
ance in 

other 

metrics 

algorithm, 

limited to 
virtual 

environment 

Chun
yong 

Yin 

[9] 

Deep learning 
model 

integrating 

CNN and 
LSTM-based 

recurrent 

Autoencoder 

Yahoo’s 
anomaly 

detection 

dataset.  

Detect 
anomalies in 

time-series 

data 

Accura
cy 

(99.62

%) 

The approach 
relies on 

generic dataset 

which may not 
be specifically 

tailored to the 

IoT 
environment 

or smart cities, 

potentially 
limiting the 

direct 

applicability 
and relevance 

of the findings 

to these 
contexts. 

Limited 

hardware 
resources may 

impact model 

optimization 

Di 
Wu 

[10] 

LSTM-Gauss-
Nbayes model 

combining 

LSTM-NN 
and Gaussian 

Naive Bayes 

Real-time 
series datasets 

(Power, Loop 

Sensor, Land 
sensor) 

Detect 
anomalies in 

real-time 

series data 

Accura
cy 

Power: 

96.9% 
Loop 

Sensor: 

95.2% 
Land 

Sensor: 

97%  

Limited 
discussion on 

scalability, 

may require 
further 

optimization 

for different 
datasets 

Ullah 
[11] 

Convolutional 
Neural 

Network 

(CNN) model 
for anomaly 

detection in 

IoT networks 

Custom IoT 
intrusion 

detection 

datasets 

Detect and 
categorize 

binary and 

multiclass 
anomalies in 

IoT 

networks 

Accura
cy 

nearly 

100% 
for all 

datasets 

and 
classes.  

Potential 
chances of 

overfitting, 

limited 
discussion on 

scalability and 

generalizabilit
y to different 

IoT 

environments 

Pajo
uh 

[17] 

Two-tier 
classification 

module with 

PCA and LDA 
dimension 

reduction, 

Naive Bayes 
and CF-KNN 

algorithms for 

attack 
detection 

NSL-KDD 
dataset 

Identify and 
categorize 

harmful 

practices in 
network 

systems 

Detecti
on rate: 

84.86% 

Generic 
Intrusion 

detection 

dataset 
employed that 

cannot be 

generalized 
for smart cities 

specifically 

for IoT 
backbone 

networks 

Diro 

[18] 

Shallow and 

deep neural 
networks for 

attack 

detection in 
Fog-to-things 

architecture 

KDDCUP99, 

ISCX and 
NSL-KDD  

Comparison 

of shallow 
approach 

with Deep 

learning. 
Spot various 

threats and 

anomalies in 
network 

systems 

Accura

cy: 
98.27 

Generic 

Intrusion 
detection 

dataset 

employed that 
cannot be 

generalized 

for smart cities 

 

III. METHODOLOGY FOR ANOMALY 

DETECTION USING MACHINE LEARNING 

 

 This section discusses the methodology 

employed to execute anomaly detection using 

machine learning techniques on IoT-based smart 

city datasets. The goal of this study is to examine the 

effectiveness of varied machine learning algorithms 

in recognizing anomalies within an arra y of data 

categories. The section presents the research design, 

data procurement, data preprocessing, feature 

extraction, a lgorithm choice, and effectiveness 

assessment methodologies. Employing a 

comparative strategy, this research scrutinizes the 

competence of notable machine learning algorithms 

in detecting anomalies in smart cities. The steps of 

the research design are dataset selection, data 

preprocessing, data sampling, algorithm selection,  

and effectiveness evaluation, illustrated in Figure 2. 

The following subsections discuss these steps. 

 

3.1  Data Collection 

Smart cities are intricate systems with many 

technologies, applications, and data sources. Having 

a single dataset for everything isn't practical. 

Datasets used for understanding smart cities include 

open data, sensor data, social media, and business 

data. But working with these datasets is tricky due 

to data gaps, privacy concerns, and different data 

sources. Combining these different datasets is also 

complex. So, smart city experts usually mix data 

sources and methods to understand different city 

aspects. Due to security and privacy concerns, we 

can't find a real dataset covering everything in a 

smart city. Instead, we're using various IoT anomaly 

detection datasets that focus on different parts of 

smart cities. These datasets come from different 

places and are meant for specific smart city areas, 

such as weather forecasting, transportation, 

household, commercial, laboratory, healthcare 

monitoring, network tracking, and agriculture. In the 

following subsections, a  brief description of each 

dataset is provided.  

 

 
Figure 2. Research design steps of the proposed 

approach for anomaly detection 

 

3.1.1 Weather Dataset 

The IoT weather datasets collects data on weather 

conditions. The data is collected via sensors 

deployed at multiple points in a smart city. These 

features of the dataset are temperature, humidity, 

wind speed, precipitation, and other weather-related 

variables. The data is then transmitted to a central 

server for storage, processing, and analysis. The 

vital benefit of the IoT weather dataset is the 

provision of real-time data which fundamental for 

the city planners and the emergency responders. 
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They are able to make timely and informed 

decisions with respect to resource allocation and 

emergency preparedness. The IoT weather data  

enables emergency responders to anticipate the 

severe impact of happenings and react as a result 

[49]. 

The more data available, the more the accuracy of 

the weather forecasts improves. However, there are 

other factors involved as well that require constantly 

apprising and sanitizing the forecast models based 

on real-time data. Such models are beneficial for 

industries, agriculture lands and transportation 

services. Moreover, the historical records of IoT 

weather datasets can support researchers in 

analyzing weather patterns over long-term which is 

beneficial regarding observations of climate change 

[50]. 

To carry out this research work, the IoT weather 

dataset is obtained from a cloud store [12]. It 

consists of 4 features: temperature, pressure, 

humidity, and label. The label feature symbolizes 

the normal or anomalous data entry. The normal data 

is represented as 0 and 1 represents anomalous data. 

 

3.1.2 Transport Datasets 

The IoT Transport data is collected from sensors 

installed in the transportation system of the smart 

city. The sensors are GPS Trackers that collects 

information from vehicle and assets based on their 

GPS activity. This information analyze traffic for 

safety and security, and supports fleet management, 

predictive maintenance. The GPS tracking provides 

real-time monitoring, vehicle location, route 

optimization, and compliance with rules and 

regulations. The traffic analysis of aggregated GPS 

data helps in optimizing traffic flow and in 

identifying bottlenecks. This analysis can lead to 

making efficient infrastructures. The parameters of 

engine performance, and fuel consumption helps in 

predictive maintenance. The maintenance activities 

are optimized and the downtime is reduced which 

results in improved fleet performance [51]. Further 

IoT GPS tracking dataset provides real-time 

tracking, and assistance in emergency situations. 

The risky driving behaviors are identified. The 

anomalies in the dataset are traffic congestion, 

traffic violations, and suspicious activity [52]. 

The dataset under consideration is sourced from a 

cloud storage platform [12] and consists of 4 distinct 

features. The features include latitude, longitude, 

label, and type. The latitude and longitude features 

represent sensor-derived geo location values. The 

label feature differentiates between normal (labeled 

as 0) and anomalous (labeled as 1) data points. 

Additionally, the type feature describes the specific 

type of attack associated with anomalous instances. 

There are 595,686 instances in the dataset. This 

dataset allows for advanced analysis to uncover 

valuable insights.  

 

3.1.3 Household Dataset 

The IoT devices and sensors provide datasets related 

to a household setting in a smart city. In this 

research, IoT Refrigerator dataset is considered [12]. 

There are four features: fridge temperature, 

temperature condition (classified as high or low), 

label, and type. 

The dataset provide information about the real time 

monitoring of temperature conditions of the food 

items inside the refrigerator. The purpose is to 

ensure the proper storage of the fragile food items. 

There are temperature condition labels that provide 

clear indications of potential issues based on which  

informed decisions regarding food consumption can 

be made [53]. 

Another information in the dataset is about energy 

efficiency and optimization in the households. The 

energy-intensive operations, and fluctuations in the 

temperature can be identified. The anomaly patterns 

in the dataset are related to sudden spikes and 

prolonged deviations in the temperature. The timely 

detection of anomalies ensure scheduling of 

maintenance that includes repairs, and component 

replacement. The aim is to achieve optimal 

performance [54]. 

 

3.1.4 IoT Motion Light Commercial Dataset  

The IoT Motion Light dataset is about IoT enabled 

motion lights equipped with motion sensors. The 

motion of individuals is detected resulting in 

switching on or off the lights. The applications are 

both commercial and in residential settings. The 

purpose is to optimize energy consumption, and 

security monitoring by developing smart procedures 

[55]. The anomalies in the dataset are related to the 

security breaches [56]. 

The dataset is obtained from a cloud store [12]. It 

has four features: motion status, light status, label, 

and type. The motion status is the detection of 

motion. The light status represent the on or off state 

of the light. The label feature represents the presence 

and absence of the anomaly. The type feature tells 

about the type of attack or anomaly encountered in 

the dataset.  

 

3.1.5 IoT Thermostat Dataset 

The IoT Thermostat dataset is about temperature 

control and monitoring in the laboratory 

environments. The aim is to ensure optimal 

conditions for experiments so that the experiment 

outcomes can’t be effected [57-58]. The dataset is in 

a cloud store [12]. The features are: current 

temperature, thermostat status, label, and type. The 

label features represents the presence and absence of 

the anomaly as 1 and 0 respectively. The type feature 

provides information about the type of anomaly. 

 

3.1.6 Healthcare Monitoring Dataset 

A real time Enhanced Healthcare Monitoring 

System (EHMS) is employed for obtaining the 
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healthcare monitoring dataset. It is also termed as 

WUSTL-EHMS-2020. There are four features: 

medical sensors, gateway, network, and control with 

visualization. The data is collected via sensors 

connected with patient’s body. It is then sent to the 

gateway. The gateway further send it to the server 

system, where it is visualized. During the 

transmission, it is vulnerable to breaches and 

unauthorized interception. To address this 

vulnerability, an intrusion Detection System (IDS) 

is employed [59-60] to monitor real time traffic for 

anomalies. The dataset incorporated man-in-the-

middle, data injection, and spoofing attacks.  

The dataset has 44 features out of which there are 35 

features related to the network flow metrics, and the 

rest of the eight features are related to the patients' 

biometrics. There is one feature that is label feature 

for anomaly detection [46]. The dataset is stored as 

csv format by a tool named as Audit Record 

Generation and Utilization System (ARGUS) [47]. 

The labeling of the data is based on the Source MAC 

address, where samples associated with the 

attacker's laptop MAC addresses are labeled as 1, 

while the remaining samples are labeled as 0. 

It is important to note that this dataset [13] was 

created through the utilization of an actual real-time 

EHMS testbed, which was divided into network, 

medical sensors, gateway, and control with  

visualization components. The dataset provides 

valuable insights for research and analysis in the 

domain of healthcare security and intrusion 

detection. 

 

3.1.7 Network Tracking Dataset 

The network tracking dataset is labeled as “DS2OS 

Anomaly Detection IoT”. It is publicly available on 

Kaggle. It is about communication among different 

IoT nodes. The nodes are connected through a 

shared middle ware, i.e., DS2OS. The sensor data is 

gathered from different IoT devices in a smart home 

setting. The anomalies are artificially injected for 

the purpose of evaluation. There are 357,952 records 

and 13 features. The features include source ID, 

type, address, location, destination service type, 

address, location, access node type, address, 

operation, timestamp, value, and normality. 

The dataset covers various attack and anomaly 

types, including: 5,780 instances of Denial of 

Service (DoS) attacks, where an attacker 

overwhelms a resource with excessive traffic. There 

are 342 instances related to data probing attacks, 

aimed at manipulating data infrastructure, 875 

samples related to malicious control, involving 

unauthorized system access, 805 examples of 

malicious operation, involving harmful code 

execution, 1,547 samples of scanning activities 

gathering data but potentially modifying it, 532 

samples of spying attacks, attempting to collect 

confidential information, and 122 samples related to 

wrong setup scenarios due to improper 

configuration. Additionally, the dataset includes a 

substantial number of normal samples, totaling 

345,899, indicating accurate and legitimate data. A 

visual representation of these aspects is provided in 

Table 7. The dataset contains a total of 357,953 

instances, as noted. 

 

3.1.8 Landsat Satellite Dataset 

The Landsat Satellite dataset encompasses 5,100 

records. There are 36 features. For soil 

categorization It is a  valuable resource. The dataset 

consists of images of earth’s surface, captured from 

satellite. The properties of the observed areas are 

characterized by the intensity values. The class 

labels classifies kind of soil as red soil, cotton crop, 

grey soil, damp grey soil, soil with vegetation 

stubble, and very damp grey soil. The dataset is 

converted into binary in a research paper for analysis 

[45]. In this binary version a new class label 

representing anomalous and non-anomalous records 

is added. The red soil, grey soil, damp grey soil, and 

very damp grey soil represent non-anomalous 

entries while cotton crop and soil with vegetation 

stubble are considered anomalous. In the binary 

dataset values of features are numeric ranging 0 to 

255. 

 

3.2 Data Pre-Processing 

The data cleaning step deals with what to do when 

we have missing data. We can either take out the 

missing parts or put in values that make sense based 

on the type of data. We also look for values that are 

really different from the rest of the data, called 

outliers, and fix them if needed. Dealing with  

missing data is very important in data preprocessing. 

When we have missing data, it can mess up the 

results. In this study, we used two techniques 

depending on what was needed for the dataset. If we 

don't have much missing data and it doesn't affect 

the whole dataset much, we might choose to just take 

out the parts with missing data. But we have to be 

careful because this might mean we lose important 

information. Another way is to replace the missing 

data with the average value. This works well if the 

missing data seems random. For example, if we're 

missing numbers like temperature, we use the 

average of the numbers we do have. And if it's about 

categories, we use the one that shows up the most. 

The DS2OS open-source dataset includes 357,952 

samples with 13 features, mainly consisting of 

categorical data. However, two features, "Value" 

and "Accessed Node Type," have missing (null) 

values. Specifically, the "Accessed Node Type" 

attribute has 148 null rows, and the "Value" attribute 

has 2050 null rows. These null values are removed 

from the dataset. Additionally, the "Value" attribute 

contains noisy data, such as instances with values 

like "False" (25,966 instances), "None" (106 

instances), "True" (14,460 instances), "Twenty" 

(200 instances), and "org.ds2os.vsl.core.utils.  
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AddressParameters" (11 instances). To address this 

issue, these noisy values are replaced with 

meaningful numeric representations, ranging from 0 

to 21.  

Another preprocessing step is dealing with data 

imbalance. To address data imbalance, various 

techniques are used, including random under-

sampling, random oversampling, SMOTE, adjusting 

class weights, and using ensemble techniques. In our 

work, we have employed SMOTE (Synthetic 

Minority Over-sampling Technique) to tackle the 

class imbalance issue. SMOTE works by generating 

imitated data records for the anomalous classes as 

there fewer instances make class imbalance. The 

Euclidean Distance formula is used to find the 

minority anomalous class instances.  

 

3.3 Supervised Machine Learning Algorithms 

In this section, the intrinsic properties of ML 

algorithms used for anomaly detection in smart 

cities are briefly discussed. The purpose is to 

provide core insights and intuitive behind suitability 

of a particular ML approach for a particular IoT-

enabled setting in a smart city environment.  

The decision tree is a simple and efficient approach 

for ML model creation. The data preprocessing time 

is small and the instances do not require 

normalization and scaling. However, it is prone to 

overfitting [30-32]. Random Forest algorithm is the 

ensemble learning version of the decision tree to 

overcome the issues of overfitting caused by 

decision trees. It can efficiently handle larger 

datasets with missing values while maintaining 

optimal accuracy [27-29]. KNN is also a simple 

model that classifies new instances based on 

similarity with its neighbors. It is good in handling 

missing data . Also, it works efficiently with discrete 

and continuous attributes [33-35]. Naïve is a simple 

ML algorithm that is based on the concept of 

probabilities. It considers independence among 

features. [36], [38-41].  

The gradient boost algorithm combines weak ML 

models for enhancing the accuracy of the prediction. 

It is good for both regression and classification 

activities. The limitation is it is computationally 

intensive and not good at handling missing values 

and mixed variable types [42-44]. SVM is also 

computationally intensive as the training time 

exponentially rise as the size of dataset scale. Also, 

its limitation is that it works with less features most 

of the time it is a  preferred approach for binary 

classification [44]. 

 

3.4 Experimental Evaluation 

The experiment is conducted using a Intel(R) 

Core(TM) i5-7200U CPU @2.50GHz 2.70 GHz 

processor, 20.0 GB RAM, 64-bit operating system, 

x64-based processor, and windows 10 pro. Table 1 

shows the accuracy of all algorithms that are taken 

by applying to all datasets after using the data 

balancing technique SMOTE. The table 2 displays 

the outcomes for both the original datasets (column 

represented as “O”) and the results after applying 

SMOTE (column represented as “S”). 

In the weather dataset, the random forest technique 

demonstrated superior performance, achieving the 

highest accuracy of 97% and outperforming all other 

methods. In contrast, the Naïve Bayes algorithm 

yielded a comparatively lower accuracy of 86% 

compared to the alternative techniques. 

Transitioning to the GPS Tracker dataset, the K-

Nearest Neighbors (K-NN) method showcased 

optimal results with an accuracy of 94%, surpassing 

other approaches. Conversely, the Naïve Bayes 

algorithm exhibited a lower performance level with  

an accuracy of 82%. In the IoT Fridge dataset, all 

applied techniques exhibited a uniform accuracy of 

85%. 

Analyzing the motion light dataset, the machine 

learning techniques consistently delivered an overall 

accuracy of 86%. Shifting focus to the thermostat 

dataset, both the Naïve Bayes and Gradient Boosting 

methods exhibited heightened accuracy of 87% in 

contrast to other techniques. On the contrary, the 

Decision Tree algorithm demonstrated a relatively 

lower accuracy score of 80%. Within the Wustl-

ehms-2020 dataset, all employed machine learning 

techniques demonstrated commendable 

performance; notably, the Decision Tree technique 

distinguished itself by achieving a remarkable 

accuracy of 97%. Within the DS2OS dataset, the 

collective performance of the machine learning 

techniques yielded an impressive accuracy rate of 

98%. Particularly noteworthy, all techniques 

displayed a perfect accuracy of 100% on the satellite 

dataset, underscoring their exceptional capabilities 

within this specific context. 

In the conducted research, attention is directed 

towards an additional dataset with class imbalance 

concerns, specifically a satellite dataset. To 

effectively address this issue, the application of the 

SMOTE technique for data balancing is prioritized . 

Prior to the implementation of data balancing 

measures, certain techniques yielded flawless 

accuracy scores of 100%. However, post the 

integration of SMOTE, there was a minor decline in 

accuracy to 99%, which still represents a notably 

high level of accuracy considering the inherent class 

imbalance within this particular dataset. 

Conversely, the influence of data balancing 

techniques, inclusive of SMOTE, demonstrated 

variability across diverse datasets. Within certain 

datasets, the alterations in accuracy remained 

minimal or inconsequential. It's important to 

acknowledge that the efficacy of data balancing 

techniques, such as SMOTE, hinges on the unique 

characteristics of the dataset and the degree of class 

imbalance present. 

Table 3 presents the precision of ML algorithms 

across all datasets. Within the weather dataset, 
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Naïve Bayes demonstrated the highest precision at 

100%, surpassing other techniques. It's unusual for 

Naïve Bayes to achieve 100% precision in a real-

world scenario, especially in a dataset as complex as 

weather data in features are highly dependent. 

However, a  significant reason behind this is that the 

weather dataset have a very distinct and separable 

distribution of features for normal and anomalous 

instances that have resulted in high precision. Also, 

Naïve Bayes is a simple and computationally 

efficient algorithm that works well with limited  

computational resources. The weather dataset do not 

require complex decision boundaries to separate the 

classes, which is why Naïve Bayes have been able 

to achieve perfect precision without overfitting. 

Random Forest and Decision Tree algorithms 

perform well in terms of precision, achieving 87% 

and 96%, respectively. 

 

Table 2. Accuracy of machine learning algorithms 

for the IoT smart city datasets 

ML 
Model 

IoT_we
ather 

Dataset 

IoT_Tr
ansport 

Dataset 

IoT-
Fridge 

Dataset 

IoT_Mo

tion 
Light 

Dataset 

IoT_Ther
mostat 

Dataset 

Wustl-
ehms-

2020  

DS2OS 
Dataset 

Satellite 
Dataset 

O S O S O S O S O S O S O S O S 

  Random  

  Forest 97% 97% 93% 93% 85% 85% 86% 86% 80% 73% 94% 93% 98% 98% 100% 99% 

  K-NN 93% 92% 94% 94% 85% 94% 86% 86% 86% 86% 92% 92% 98% 98% 100% 99% 

  Naïve    

  Bayes 
86% 86% 82% 86% 85% 85% 86% 86% 87% 87% 90% 90% 98% 98% 100% 99% 

  Decision  

  Tree 96% 96% 92% 92% 85% 85% 86% 86% 80% 80% 97% 97% 98% 98% 100% 99% 

  SVM -- -- -- -- -- -- -- -- -- -- 91% 90% 98% 98% 100% 100% 

  Gradient   
  Boosting   

  tree 
87% 86% 86% 86% 85% 85% 86% 86% 87% 87% 94% 94% 98% 98% 100% 99% 

 

This is likely because decision tree-based methods 

are effective for capturing non-linear relationships 

between weather features and anomalies. Random 

Forest, being an ensemble of decision trees, further 

enhances performance through aggregation. K-NN 

exhibits lower precision (76%), possibly due to the 

high dimensionality of weather data and the need for 

careful tuning of the k parameter. In high-

dimensional spaces, K-NN may struggle to find 

relevant neighbors, leading to decreased precision. 

Similarly, in the context of the GPS Tracker dataset, 

Naïve Bayes excelled with a precision of 100%. This 

is surprising but could be attributed to the simplicity  

of the Naïve Bayes algorithm and the distribution of 

features in these datasets. Gradient Boosting 

displayed a relatively lower precision of around 

86%.  

When examining the IoT Fridge dataset, Naïve 

Bayes exhibited the highest precision at 100%, 

indicating that the dataset's features are well-suited 

to the assumption of feature independence. Random 

Forest and Decision Tree algorithms are not 

performing well, achieving 73% precision, 

indicating that these algorithms are not effective at 

capturing complex relationships in IoT fridge data, 

such as temperature fluctuations and energy 

consumption patterns. 

In the case of the Motion Light IoT dataset, both K-

NN and Naïve Bayes techniques yielded exceptional 

precision outcomes of 100%, outperforming other 

methods that attained comparatively lower precision  

scores. Transitioning to the thermostat dataset, 

Naïve Bayes achieved the highest precision levels at 

100%. Conversely, alternative techniques returned 

precision scores of a lower magnitude. 

Evaluation of the Wustl-ehms-2020 dataset unveiled 

proficient performance across all machine learning 

techniques, with K-NN garnering a precision score 

of 98%. Moving on to the DS2OS dataset, both 

Random Forest and K-NN techniques showcased 

superior precision at 98%, while the remaining 

methods achieved a precision score of 97%. 

Remarkably, in the satellite dataset, all techniques, 

except for Gradient Boosting which obtained 93%, 

achieved a precision of 100%. 

 

Table 3. Precision of machine learning algorithms 

for the IoT smart city datasets 

ML 

Model 

IoT_

weath

er 
Dataset 

IoT_GP

S 

Tracker 
Dataset 

IoT-

Fridge 
Dataset 

IoT_Mo

tion 

Light 
Dataset 

IoT_Ther

mostat 
Dataset 

Wustl-

ehms-
2020  

DS2OS 

Dataset 

Satellite 

Dataset 

O S O S O S O S O S O S O S O S 

  Random  
  Forest 97% 87% 93% 93% 73% 73% 74% 74% 78% 70% 94% 91% 98% 98% 100% 99% 

  K-NN 80% 76% 98% 82% 98% 82% 100% 100% 98% 14% 98% 93% 98% 98% 100% 99% 

  Naïve    

  Bayes 
100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 96% 97% 97% 100% 99% 

  Decision  

  Tree 96% 96% 92% 92% 73% 73% 74% 74% 74% 79% 78% 97% 97% 97% 100% 99% 

  SVM -- -- -- -- -- -- -- -- -- -- 97% 97% 97% 97% 100% 100% 

  Gradient   
  Boosting   
  tree 

87% 96% 86% 100% 73% 73% 74% 74% 76% 76% 95% 95% 97% 97% 93% 99% 

 

The analysis of precision presented in the table 

highlighted distinct patterns across datasets. 

Notably, the satellite dataset, characterized by class 

imbalance, exhibited subtle shifts in precision 

subsequent to the implementation of the SMOTE 

technique. Conversely, the majority of other datasets 

demonstrated minimal fluctuations in precision, 

with only a subset of techniques displaying minor 

variations. Intriguingly, the precision outcomes for 

the remaining datasets proved superior without the 

integration of SMOTE. 

For instance, within the IoT weather dataset, while 

precision scores remained consistent for most 

techniques, two methods experienced a decrease in 

precision, and one exhibited an enhancement. 

Similarly, in the context of the IoT GPS tracker 

dataset, the majority of techniques maintained stable 

precision scores, except for K-NN, which observed 

a reduction, and GB, which showcased an 

improvement. In the IoT Fridge dataset, select 

techniques displayed alterations in precision. 

Conclusively, the influence of SMOTE on precision  

displayed diversity across datasets and techniques. 

The application of SMOTE was selective, 

addressing class imbalance within the satellite 

dataset, whereas other datasets demonstrated either 

marginal changes or achieved superior precision 

results without the integration of SMOTE.  

Table 4 represents the Recall results of all 

techniques which is applied on datasets. 
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Table 4. Recall of machine learning algorithms for 

the IoT smart city datasets 

ML 

Model 

IoT_
weath

er 

Dataset 

IoT_GP
S 

Tracker 

Dataset 

IoT-

Fridge 

Dataset 

IoT_Mo
tion 

Light 

Dataset 

IoT_Ther

mostat 

Dataset 

Wustl-

ehms-

2020  

DS2OS 

Dataset 

Satellite 

Dataset 

O S O S O S O S O S O S O S O S 

  Random  

  Forest 97% 90% 94% 93% 85% 85% 96% 96% 80% 80% 94% 94% 98% 98% 100% 99% 

  K-NN 66% 60% 95% 70% 85% 70% 86% 86% 87% 2% 92% 92% 98% 98% 100% 99% 

  Naïve    
  Bayes 

86% 86% 86% 86% 85% 85% 86% 86% 87% 87% 92% 92% 98% 98% 100% 99% 

  Decision  
  Tree 96% 96% 92% 92% 85% 85% 86% 86% 80% 80% 97% 97% 98% 98% 89% 96% 

  SVM -- -- -- -- -- -- -- -- -- -- 92% 92% 98% 98% 
99.4

% 
99.4% 

  Gradient   
  Boosting   
  tree 

87% 87% 86% 86% 85% 85% 86% 86% 87% 87% 94% 94% 98% 98% 100% 99% 

 

In the weather dataset, Random Forest emerged with 

the highest recall rate at 97%, outperforming other 

methods. Conversely, Naïve Bayes yielded a recall 

rate of 86%, placing it below the recall rates of the 

remaining techniques.  Moving to the GPS Tracker 

dataset, K-NN exhibited a superior recall rate of 

95%, surpassing both Naïve Bayes and Gradient 

Boosting techniques, which achieved recall values 

of approximately 86%. Within the Motion Light IoT 

dataset, the Random Forest technique excelled with 

a recall rate of 96%, while other techniques achieved 

a recall rate of 86%. In the thermostat dataset, Naïve 

Bayes, K-NN, and Gradient Boosting techniques 

achieved a reca ll rate of 87%, while Random Forest 

and Decision Tree techniques displayed lower recall 

rates. Examining the Wustl-ehms-2020 dataset, the 

Decision Tree technique garnered the highest recall 

value at 97%. For the DS2OS dataset, the overall 

recall performance of machine learning techniques 

demonstrated consistency, achieving 98%. In the 

case of the IoT Fridge dataset, all techniques 

exhibited the same recall rate of 85%. Notably, 

within the satellite dataset, all techniques attained a 

recall of 100%, except for Decision Tree and SVM, 

which achieved recall rates of 89% and 99.4%, 

respectively. 

Even after implementing SMOTE, there was a 

technique that consistently displayed low recall 

rates, echoing the findings noted in terms of 

precision. This suggests that SMOTE's influence on 

enhancing recall for this specific technique was 

relatively minor. Consequently, the decision was 

made to maintain the results achieved prior to 

employing SMOTE for the rest of the datasets. 

However, in the case of the satellite dataset, the 

utilization of SMOTE yielded favorable outcomes, 

leading to reasonable levels of accuracy, precision, 

and recall. This progression now calls for the 

calculation of the F-measure to provide a holistic 

assessment of the model's performance. Table 5 

represents the F-measure results of all techniques 

which is applied on datasets. 

The analysis conducted unveiled a diverse impact of 

SMOTE data balancing across the datasets. Several 

datasets demonstrated enhanced accuracy when 

combining SMOTE with distinct machine learning 

algorithms. These enhancements became evident 

through heightened accuracy scores or significant 

alterations in particular data points. 

 

Table 5: The F-measure score of all techniques on 

IoT datasets. 

ML 

Model 

IoT_w
eather 

Dataset 

IoT_GPS 
Tracker 

Dataset 

IoT-
Fridge 

Dataset 

IoT_Moti
on Light 

Dataset 

IoT_Ther
mostat 

Dataset 

Wustl-
ehms-

2020  

DS2OS 

Dataset 

Satellite 

Dataset 

O S O S O S O S O S O S O S O S 

  Random  

  Forest 0.97 0.88 0.93 0.93 0.79 0.79 0.79 0.84 0.79 0.75 0.94 0.92 0.98 0.98 0.94 0.99 

  K-NN 0.96 0.67 0.96 0.76 0.91 0.76 0.92 0.92 0.92 0.04 0.95 0.92 0.98 0.98 0.94 0.99 

  Naïve    

  Bayes 
0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.93 0.93 0.94 0.94 0.97 0.97 0.93 0.99 

  Decision  

  Tree 0.96 0.96 0.92 0.92 0.78 0.79 0.80 0.80 0.79 0.79 0.97 0.97 0.97 0.97 0.94 0.97 

  SVM --  -- -- -- -- -- -- -- -- 0.94 0.94 0.97 0.97 1 0.99 

  Gradient   
  Boosting   

  tree 
0.81 0.91 0.8 0.92 0.78 0.79 0.79 0.80 0.81 0.81 0.95 0.94 0.97 0.97 0.96 0.99 

 

Nevertheless, it's noteworthy that not all datasets 

encountered a substantial accuracy shift post-

SMOTE. Certain datasets already exhibited 

commendable performance even without data 

balancing, leading to comparable accuracy scores 

between the original imba lanced dataset and the 

SMOTE-balanced dataset when employing various 

machine learning algorithms. 

 

IV. RESEARCH FINDINGS AND 

DISCUSSION 

 

 In this section, we will summarize the key 

findings of our research, focusing on the 

performance of different machine learning 

algorithms for anomaly detection in smart cities. 

Firstly, a  brief overview of the key insights related 

to the accuracy, precision, recall, and f-measure 

results obtained for each algorithm across the eight 

IoT datasets is discussed. Secondly, the performance 

of the machine learning algorithms is compared. The 

consistent trends or substantial differences are 

highlighted. The strengths and weaknesses of 

machine learning models considering factors such as 

computational efficiency, scalability, robustness, 

and interpretability for detecting anomalies in smart 

cities is discussed. The scientific reasoning for the 

performance of each algorithm, explaining why 

certain algorithms may perform better or worse than 

others in specific scenarios based on their 

underlying principles, assumptions, and 

characteristics is discussed. The implications of the 

outcomes for real-world applications in smart cities 

are discussed. The limitations of the research work 

are also mentioned. Finally, the research study is 

concluded by suggesting a machine learning model 

as an optimal solution for anomaly detection in 

smart cities. 

 

4.1 Key Insights 

The Machine learning algorithms demonstrate 

varied performance for IoT weather dataset. Naïve 

Bayes achieves the highest scores of precision  

recall, and F-measure due to its probabilistic nature 

and modeling dependencies among features 
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efficiently. As discussed, there is a complex 

relationship among features of IoT weather dataset. 

Due to this, the Random Forest and Decision Tree 

algorithms also achieves consistent accuracy scores.  

Naïve Bayes consistently exhibits high precision, 

recall, and F-measure scores for the IoT Transport 

dataset.  It takes the advantage of its probabilistic 

nature to model dependencies among latitude, 

longitude, label, and type features of the dataset and 

predict anomalies. There is a contrast in the 

performance of K-NN and Gradient Boosting Tree 

algorithms. K-NN achieves high accuracy but the 

precision, recall, and F-measure is quiet low as K-

NN is sensitive to distance-based measures. On the 

other hand, Gradient Boosting Tree has a high recall 

score but lower score for precision which depicts it 

inability in handling false positives. 

For the IoT Fridge dataset, Naïve Bayes 

consistently outperforms with high scores for 

precision, recall, and F-measure conditions. K-NN 

exhibits outstanding performance for precision after 

the data imbalance problem is resolved.  Random 

Forest, Decision Tree, and Gradient Boosting Tree 

algorithms depict robustness in handling features in 

IoT fridge dataset by consistent performance for 

both the original and SMOTE applied datasets. 

For the IoT Motion Light Commercial dataset, 

Naïve Bayes, K-NN, and Decision Tree achieve 

high scores for precision, recall, and F-measure. 

Random Forest and Gradient Boosting Tree 

algorithms demonstrate contrasting results as it 

achieves robust performance with a high recall on 

the original dataset. The results of precision and f-

measure decline when SMOTE is applied.  

Naïve Bayes consistently achieves high scores for 

precision, recall, and F-measure for the IoT 

Thermostat dataset. Decision Tree and Gradient 

Boosting Tree algorithms also perform well. K-NN 

exhibits inconsistent behavior with high score for 

accuracy but lower scores for recall and F-measure 

when data imbalance dealt. This indicates 

inconsistent behavior in detecting anomalies 

effectively. 

For the WUSTL-EHMS-2020 dataset, Decision Tree 

achieve the highest scores for precision, recall, and 

F-measure. Random Forest and Gradient Boosting 

Tree algorithms and K-NN also perform well.  

For the DS2OS dataset and Landsat Satellite 

dataset, Machine learning algorithms demonstrates 

high performance scores for accuracy, precision, 

recall, and F-measure. 

 

4.2 Comparative Analysis 

The comparative analysis of the ML algorithms for 

the weather dataset reveals that Naïve Bayes can 

efficiently capture dependencies among weather 

features. It is capable of handling high-dimensional 

feature spaces efficiently. This quality makes it an 

effective solution for anomaly identification in 

weather dataset where the features are sparse and 

independent. The nonlinear complex relationships 

among the features are captured by Random Forest 

and Decision Tree algorithms due to which they 

have high score for accuracy but slightly lower score 

for precision, recall, and F-measure as compared to 

Naïve Bayes scores. This shows their struggle 

against imbalanced class distribution. K-NN and 

Gradient Boosting Tree algorithms have lower 

scores for precision, recall, and F-measure due to the 

high-dimensionality among features of the weather 

dataset. 

Similarly, Naïve Bayes outperforms for the IoT 

Transport dataset for all the performance metrics.  

The Random Forest, and Decision Tree algorithms 

have almost similar outcomes with minor 

differences. The comparative analysis tells that the 

aforementioned algorithms have correctly identified 

the intricate connections in the transport dataset. 

However, K-NN depicts inconsistent behavior. This 

shows that it is sensitive to feature representations 

and dependence on distance-based measurements. 

Gradient Boosting Tree works well for recall but 

have contrasting behavior for precision. This shows 

the presence of false positive. 

For fridge temperature conditions, Naïve Bayes 

consistently outperforms other ML algorithms. 

Decision tree, random forest, and gradient boosting 

also represent consistent behavior for both original 

and smote-applied datasets which indicates their 

suitability for anomaly detection. K-NN inconsistent 

behavior still makes it unsuitable for anomaly 

detection in smart cities, although precision is 

improved for smote-applied dataset.  

Naïve Bayes, K-NN, and Decision Tree algorithms 

consistently achieve high precision, recall, and F-

measure scores, leveraging their respective strengths 

in probabilistic modeling, distance-based 

classification, and hierarchical decision-making to 

effectively detect anomalies in motion and light 

behavior  Random Forest and Gradient Boosting 

Tree algorithms demonstrate robust performance in 

recall on the original dataset, highlighting their 

ability to capture diverse patterns and anomalies in 

motion and light status, albeit with moderate 

declines in precision and F-measure with SMOTE 

applied. 

Naïve Bayes consistently outperforms other 

algorithms, leveraging its probabilistic modeling 

approach to effectively capture the complex 

relationships between temperature readings, 

thermostat status, and anomaly labels for IoT 

thermostat dataset.  

Considering the collective findings, Naïve Bayes 

appears as the most suitable machine learning model 

for handling IoT datasets in smart city environments 

due to its effectiveness and simplicity. Limitations 

of the research include the need for addressing 

biases in datasets, optimizing model parameters, and 

evaluating performance under diverse real-world 

scenarios. Additionally, scalability issues may arise 
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in large-scale anomaly detection tasks, warranting 

further investigation. 

 

4.3 Naive Bayes as the optimal model for anomaly 

detection in Smart Cities 

In view of comprehensive discussion of results 

above, Naïve Bayes stands out as the optimal 

machine learning model for anomaly detection in 

smart cities. In the following, the scientific 

reasoning in support of this outcome is provided. 

1. Naïve Bayes is a simple, and computationally 

efficient algorithm. It treats features 

independently that do not require extensive 

pre-processing or feature engineering. This 

quality makes it suitable for real-time anomaly 

detection in smart city where IoT networks 

comprise of devices that have limited  

computational capability, power consumption, 

processing power, and memory.  

2. There are varied IoT devices in smart cities that 

results in increasing the dimensionality of the 

data. Naïve Bayes is suitable for dealing high 

dimensional and independent feature data. It 

adapts to unseen data patterns that makes it 

suitable for detecting novel anomalies.  

3. In smart cities incorrect sensor’s readings due 

to network disruptions is very common. Naïve 

Bayes algorithm provides a reliable operation 

in smart cities by depicting robustness against 

noisy data.  

4. Naïve Bayes works with the statistical 

properties of the data instead of capturing or 

storing the data instances. This ensures that the 

model does not store any sensitive information 

about the training data. This quality makes it 

suitable for smart cities as data privacy and 

security are a major concern in such 

environments.  

 

V. CONCLUSION AND FUTURE WORK 

 

With the increasing prevalence of IoT gadgets, 

smart environments such as hospitals, banks, 

factories, and cities are being transformed. 

However, the data collected from these IoT devices 

can often be distorted or degraded due to various 

factors such as device damage, data errors, issues 

with pattern matching, or even malicious attacks. 

This abnormal or anomalous data needs to be 

identified and addressed, and this is where anomaly 

detection comes into play. Machine learning 

techniques have emerged as effective tools for 

detecting anomalies in data, and their application 

can significantly improve the performance of any 

system. 

While there is existing literature on anomaly 

detection in certain elements of smart cities, a  

comprehensive scientific evaluation of anomaly 

detection specifically tailored to smart cities' 

essential and significant components is lacking. 

Therefore, this study aims to address this gap by 

examining the effectiveness and efficiency of 

anomaly detection in smart cities. To achieve this, 

data is gathered from various sources, representing 

different aspects of smart cities. Subsequently, a  

range of machine learning algorithms are applied to 

these datasets to assess their performance. In future, 

our research plan is to compile da tasets of a 

complete smart city using Generative Adversarial 

Network (GAN) algorithms.  
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