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Abstract-  The bird sound classification is a 

significant aspect of bioacoustics research, wildlife 

conservation, and an advanced system for analyzing 

bird populations. In this article, a framework is 

suggested to categorize bird species based on their 

sound vocals through acoustic signals. The 

framework comprises of fusion of features extracted 

from Acoustic Local Ternary Patterns (ALTPs), 

Mel-Frequency Cepstral Coefficients (MFCCs), and 

Linear Predictive Coding (LPC). After the signal 

representation is performed, we categorize the signal 

by different classifiers. We used a publicly available 

research-oriented Bird Sound dataset comprising 

781 sound specimens from 18 diverse bird species. 

This research not only plays an important role in the 

field of bioacoustics but can also act as a valuable 

tool supporting wildlife conservation. Moreover, the 

vocalization detection method can also give an 

intuition of bird's behavior into their ecological 

roles, habitat inclination, and adaptation to 

environmental changes. The proposed sound 

classification technique achieved a higher accuracy 

rate of 97.4% using the Bagged Trees Ensemble 

method, in comparison with the research conducted 

on the same 18 classes of Bird Sound dataset. The 

experimental results depicted the reliability of a 

novel approach for the recognition of bird species 

based on their sounds. 

 

Keywords-  Birds Sound Classification, Acoustic-

LTP; Acoustic-LPC; MFCC, Feature Fusion 

 

I. INTRODUCTION 

 

 Birds are natural predictors of animal 

diversity and ecosystem preservation in the world. 

Birds are not only necessary for the functioning of 

ecosystems but also provide several benefits to 

human societies, making their conservation and 

protection crucial for the well-being of both natural 

environments and human communities. Bird sound 

detection and classification is a process that involves 

the identification and marking of the sound 

produced by distinct bird species [1]. The diverse 

variety of existing bird sounds and many other 

factors affecting the way of a particular sound 

production make this process complex and 

challenging. [2-3] There are many applications 

including wildlife conservation, bioacoustics 

research, and automated system development to 

classify bird sounds for tracking the bird population. 

[4] For instance, classification through bird sound 

detection can help monitor the endangered species, 

the migration pattern, and the fluctuation in the bird 

population over time [5]. 

This enables an evident focus on automating species 

detection in soundscape recording [6]. This study is 

an initiative of a set of data processing steps that 

integrates a convolutional neural network trained on 

Mel-spectrogram to depict the set of species present 

in the recording. The incorporation of transfer 

learning and unique loss functions primarily 

contributes to efficient training and highlights the 

challenges related to the limited labeled datasets [3]. 

In birds sound classification researcher presents an 

alternative solution using the spectrograms for 

transfer learning, the fine-tuning a pre-trained 

network for the visual representation of sound [7]. 

The process starts with the audio recording from the 

environment a capturing variety of birds’ songs and 

calls. The audio data is transformed into visual 

representations such as spectrogram. The method 

applied to these spectrograms are machine learning 

models for the classification of different bird’s 

species based on their acoustic patterns. In Fig. 1 

there are some species of birds from Birds Sound 

dataset. 

 

 
Fig. 1. Bird Images 

 

The [8] study emphasizes the significance of 

ensemble classifiers in addressing challenges posed 

mailto:syed.haseeb@students.uettaxila.edu.pk


Technical Journal, University of Engineering and Technology (UET) Taxila, Pakistan  Vol. 29 No. 2-2024 

ISSN:1813-1786 (Print) 2313-7770 (Online) 

54 

by limited environmental audio datasets. Through 

the strategic utilization of data augmentation 

techniques and multiple signal representations, this 

research retrains Convolutional Neural Networks 

(CNNs) on three standard datasets named Bird 

Calls, Environmental Sound Classification database 

and Cat Sounds dataset. The ensembles exhibit 

accuracy, reaching impressive up to 97% on bird 

datasets, 90.51% on cat datasets, and 88.65% on the 

challenging ESC-50 dataset [9]. In the exploration 

of Indonesia's avian soundscape, the [10-11] delve 

into the classification of Indonesian scop owls' vocal 

sounds. Both studies employ a four-layer CNN and 

compare the model's performance using different 

acoustic signal representations. Remarkably, the 

dual-input network emerges as the top-performing 

model, achieving a Mean Average Precision (MAP) 

of 97.55% in both experiments. 

Researcher presented their research by focusing on 

the environmental sound identification smart cities, 

[4] introduces MosAIc a machine learning classifier 

and a lighter CNN model. These models compete in 

accuracy with deep learning solutions emphasizing 

the fact that classical machine learning classifiers 

can carry competitive outcomes with decreased 

computational cost. This research underscores the 

importance of Contemplating the resource limitation 

when disposing the sound classifiers in the smart 

city. In [12] researchers present the bird sound 

classification technique based on constant frame 

sequences and spectrogram-frame linear network 

(SFLN). This attains high mean average precision 

(MAP) values up to 0.97, underlining the 

effectiveness of continuous frame sequences in 

picking the intricate frequency distribution and 

time-changing characteristics of bird sounds. 

The bird classification field has brought about an 

innovative acoustic approach [13]. This also 

addresses numerous challenges, including confined 

labeled data, computational complexity, and the 

necessary robust effective classification models as 

this field continues to enhance, these contributions 

offer valuable intuitions and methodologies or 

techniques for researchers directing the convergence 

of ornithology machine learning and environmental 

studies. 

Bird sound detection classically depends upon 

various methods such as MFCC and linear 

Predictive Coding. MFCC comprises low-

dimension features with efficient accuracy that 

make it favorable for sound detection. However. The 

other environmental noises interrupt the sound 

access during the collection of data. Affecting the 

efficiency of MFCC features. In addition to this. 

Various initiating conditions suppress the quality of 

MFCC features resulting in misidentification of 

sound recognitions. For the correction of these 

errors, this research brings about the latest feature-

fusion through the acoustics-LTP, MFCC, and LPC 

using 20,13, and 10 defined characteristics from the 

signal received from each respective technique. This 

extensive feature vector provides robust 

characteristics of vast bird sounds with high 

accuracy according to the respective techniques. 

 

II. LITERATURE REVIEW 

 

 The research [1] contributed to bird sound 

classification using acoustic signals and delved into 

the application of multileveled ternary pattern (TP) 

feature generation. The authors introduced Iterative 

Relief F (IRF) for environmental sound recognition, 

which is an improved version of Relief F. TP feature 

generation is used in the presented automated bird 

sound classification model whereas IRF works as a 

feature selector which selects the most reliable 

feature automatically operated on linear 

discriminant (LP). 

This study contributed to bird sound classification 

using CNN and achieved an accuracy of 96.45%. 

Emphasizing the necessity of adaptable models 

across diverse datasets, the study introduces an 

ensemble of classifiers utilizing various data 

augmentation techniques. Five pre-trained CNNs 

are retrained and tested on three benchmark datasets 

[14].  

Several related studies [15]  contribute to the 

understanding of acoustic signal processing and 

convolutional neural networks focus on identifying 

bird and frog species in tropical soundscapes, 

introducing a custom training loss and false-positive 

detections for multi-label learning. 

To explore fault diagnosis in industrial machines 

using acoustic signals, the researchers propose drill 

fault diagnosis based on sound signal scalograms 

and Mel spectrograms. Various visual 

representations and texture extraction techniques are 

also investigated for audio classification, enriching 

the literature [16]. The research [17] commonly 

performs machine learning techniques like 

traditional machine learning and deep learning 

techniques followed by signal modification 

techniques such as time-frequency for bird sound 

categorization. The respective techniques' efficiency 

varies depending upon the special data set used. 

By using deep learning models, some studies have 

reported a high accuracy rate for sound classification 

whereas others have found that traditional machine 

learning can also be effective [18]. The notable 

advancements and emerging trends in bird sound 

classification using acoustic signals include the use 

of deep learning techniques such as CNNs and 

recurrent neural networks (RNNs) for feature 

selection and classification. Besides this, the use of 

unsupervised learning for clustering bird sounds, 

based on their acoustic features is also recognized. 

There is also a trend towards developing portable 

field recorders for the remote acoustic monitoring of 

birds and other animals [19-20]. The main findings 

underscore the promising application of 
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convolutional neural networks for species 

identification in soundscape recordings. Notably, 

the custom training loss function contributes to 

stable learning and improved performance, with the 

false-positive detection algorithm reducing manual 

efforts in collecting multi-label training data. The 

outcomes demonstrate the potential of CNNs for 

multi-label audio classification, providing a 

valuable pipeline [3] for researchers interested in 

applying this approach to different datasets. 

Mel-frequency cepstral Coefficients (MFCCs) are 

generally used as audio features. These coefficients 

constitute discrete values that add up to a unit vector 

and are used to catch the vocal tract form in time-

continuum. Other discrete features that may be 

gained to analyze the bird sounds consist of prosody, 

note-like and sound elements, word series, and 

design expression patterns. Through the analysis of 

respective features, the researchers can get plenty of 

useful information regarding bird sounds such as 

their special sound types (e.g.  High, low, sad, 

cheerful, gentle, quiet). These acoustics features can 

be fruitful for the categorization and detection of 

bird species contributing to environmental health 

and biodiversity preservation [12, 21-22].  

The major challenges in bird sound classification 

include variation frequency in bird sounds, the lack 

of annotated datasets, background noise, and 

interruptions, confined computational resources 

[16]. It is noted that these challenges result in 

difficulty in differentiating among distinct species 

vocals, restricting the ability to train and evaluate 

machine learning models, and to withdraw suitable 

characteristics of bird sounds. To figure out these 

challenges, the researchers have designed more 

innovative feature extraction techniques, new 

datasets, and innovative tools for noise reduction 

and source separation. They have also found more 

effective algorithms and hardware architectures. The 

authors proposed an upgraded spectrogram 

representation that applies a logarithmic frequency 

scale and modified time-frequency resolution. They 

also use a Markov renewal process model to 

enhance the capture of the temporal structure of bird 

sounds [23]. A perspective of bird sound 

classification implies deep learning techniques such 

as neural networks. A recent study by [24-25] 

proposed a novel bird sound classification 

framework based on a CNN integrated with the 

Grad-CAM algorithm. They proposed a feature 

augmentation technique named the Gaussian 

Mixture Model (GMM) via Principal Component 

Analysis (PCA). Researchers used the feature fusion 

network MFF-ScSEnet and achieved high 

classification performance using the dataset 

Birdsdata. Their results showed an accuracy of 

96.66%, which is a significant improvement over 

other methods [26]. Another recent study by [27] 

proposed a method using wavelet packet 

decomposition feature extraction and a deep neural 

network classifier to classify bird sounds. Their 

proposed method was tested on a dataset of 10 bird 

species and achieved an accuracy of 90.94%, which 

outperformed other classifiers such as k-NN, SVM, 

and RF [28]. 

 

III. PROPOSED METHOD 

 

 The proposed bird sound classification 

framework consists of various stages that are used to 

classify bird sounds using acoustic signals. Fig. 2 

shows the different stages involved in the 

architecture of the proposed framework. It includes 

data acquisition, here we used the Birds Sound 

Dataset [15]. Sounds for this dataset have been 

collected by the researcher from sources such as the 

Xeno-Canto website and YouTube, maintaining a 

sampling frequency of 48 kHz. In the file format 

conversion stage, the bird sound signals are 

converted into wave format that is suitable for 

further analysis. Blank areas of sound signals are 

also handled using the windows overlap technique 

to get more active features for sound signals. As the 

dataset also includes sound from internet sources, it 

has been made sure that all sound signals are at the 

same sample rate. Using jAudio software Mel 

Frequency Cepstrum Coefficients (MFCC) number 

of coefficients are 13 as features dimensions. And 

linear predicted coding (LPC) technique is used for 

acoustic signal processing representing the spectral 

envelope of the digital signal using the 

autocorrelation method and extracted LPC 10 

features. The sound analysis output is set as ARFF. 

Windows size of samples 512 and window overlap 

fraction is set to 0.5. For acoustic local patterns, 

Ternary patterns are used to extract 20 features for 

each signal using MATLAB. The fusion of these 43 

features is used to create a comprehensive feature 

vector.  

 

 
Fig. 2. Architecture of proposed Bird Sound 

Classification 

 

This vector is then passed as an input to the sound 

classification module where the different state-of-

the-art and already established classifiers are used 

for further classification of sounds of 18 classes of 

different birds. 
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Finally, the proposed system identifies the presence 

of a particular bird sound in the acoustic signal. 

This robust fusion of features provides a 

comprehensive feature vector that supports machine 

learning algorithms to achieve acceptable 

accuracies. The classifiers used include ensemble 

methods of Bagged and RUSBoosted. Other 

classifiers are K-Nearest Neighbors (kNN) and 

Support Vector Machine (SVM). The proposed 

framework is designed to effectively classify bird 

sounds using acoustic signals which can be 

applicable in wildlife monitoring and conservation. 

The framework is a systematic approach that 

comprises various steps, such as file format 

conservation, data access, silent zone suppression, 

MFCC extraction, LPC modeling, acoustics local 

patterns extraction and fusion, and finally the bird 

sound categorization and recognition through 

machine learning algorithms. 

 

A. Acoustic Local Binary Patterns (Acoustic-LBP) 

Acoustic-LBP [30] is a fast and computationally 

efficient method for encoding signals that 

effectively emphasizes specific signal properties. 

These features, known as linear LBP codes, can be 

used to segment signals and generate signal 

thumbprints. LBP assigns a unique code to each 

center sample by analyzing the nearby data samples 

of a signal and applying thresholding. 

Let 𝑉_𝑠^((𝑗)) [n] be the value of the central sample 

in the samples window with P + 1 elements in audio 

signal 𝑌 for 𝑗 = [𝑃 :𝑁 − 𝑃].  

 

𝑗 = [
𝑃

2
: 𝑁𝑠 − 

𝑃

2
]. The acoustic-LBP is stated as: 

 

𝐿𝐵𝑃𝑝 (𝑉𝑠[𝑗])

= ∑  

{
 
 

 
 𝑆 [𝑉𝑠  [𝑗 + 𝑘 − 

𝑝

2
] − 𝑉𝑠[𝑗]] 2

𝑘 +  

 
 

… 𝑆 [𝑉𝑠 [𝑗 + 𝑘 + 1] − 𝑉𝑠  [𝑗]]2
𝑘+
𝑃
2}
 
 

 
 𝑝

2
−1

𝑘−0

       (1) 

 

Where sign function S[.] is given by: 

 

𝑆[𝑉𝑠]= {
1,       𝑓𝑜𝑟  𝑉𝑠   ≥ 0
0,   𝑓𝑜𝑟  𝑉𝑠   ≥ 0 

}           

 

In LBP, illustration Vs [ j]  will be the threshold 

value for the vicinal samples. The function S[.] gives 

the difference of Vs [ j] and its neighboring samples 

as a binary code representing as P-bit code. Now the 

LBP code is multiplied by the binomial weights and 

finally summation is performed to get the LBP value 

for the sample Vs [ j]. LBP codes are employed to 

represent local patterns, characterized by; 

𝐻𝑘 = ∑
𝑝

2

 
 < 𝑗 ≤ 𝑁 −

𝑝

2
  (𝐿𝐵𝑃𝑝(𝑉𝑠[𝑗]), 𝑘)                                                    

𝛿
(2) 

 

Where k=1…n, n illustrates histogram bins related 

to each LBP code, and 𝛿(𝑖,𝑗) is the Kronecker delta 

function. 

Because Acoustic-LBP features employ a threshold 

precisely at the main sample proving to be highly 

susceptible to noise. This sensitivity becomes 

especially pronounced at edges where differences in 

certain directions exceed those in others, as noted in 

references [28]. Even minimal exposure to noise can 

render the results and make acoustic-LBP descriptor 

unreliable. 

 

B. Acoustic-Local Ternary Patterns (Acoustic-LTP) 

In ternary patterns as sound signal descriptor the Vs 

[ j] is generated, and a code of three values for -1,1 

and 0 used in acoustic-LTP is defined in [29]. Here 

the magnitude difference of signals is calculated 

between Vs [ j] and its eight neighbors 𝑈𝑃. Signal 

values in the range of width ±𝑡ℎ around Vs [ j] are 

quantized to zero. The three valued numbers are 

attained 1 for the values above Vs [ j] + th and -1 is 

quantized for the value below Vs [ j] + th while 0 is 

the value between the above and below the line. The 

function calculating these three values is given by: 

 

𝑆′(𝑈 , 𝑉 [𝑗], 𝑡ℎ)

=  {

+1, [𝑈𝑝 − (𝑉𝑠[𝑗] + 𝑡ℎ)] ≥ 0

  0,        [𝑉𝑠  [𝑗] − 𝑡ℎ] <  𝑈𝑝 < [𝑉𝑠 [𝑗] + 𝑡ℎ

−1,           [𝑈𝑝[𝑗] − 𝑡ℎ]  ≤   0 

  (3) 

 

𝑆′(𝑈𝑝 , 𝑉𝑠  [ j], 𝑡ℎ )  in equation (4) represents the 

audio signal by three-valued ternary patterns. This 

acoustic signal is then divided into S′𝑢𝑝𝑝𝑒𝑟 and 

𝑆′𝑙𝑜𝑤𝑒𝑟 values. In S′𝑢𝑝𝑝𝑒𝑟 +1 is retained as 1 and 

all other -1 and 0 will be considered 0s in equation 

(4).  

 

𝑆𝑢𝑝𝑝𝑒𝑟
′ (𝑈𝑝 , 𝑉 [𝑗], 𝑡ℎ) =

{
1,𝑓𝑜𝑟[𝑆′(𝑈𝑝,𝑉𝑠 [𝑗],𝑡ℎ  = +1  ]

0,    𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
                                            (4) 

 

Similarly, in 𝑆𝑙𝑜𝑤𝑒𝑟
′ (𝑈𝑝 , 𝑉 [𝑗], 𝑡ℎ) -1 is retained as 1 

while +1 and 0s will be considered as 0s in equation 

(5): 

 

𝑆𝑙𝑜𝑤𝑒𝑟
′ (𝑈𝑝  , 𝑉 [𝑗], 𝑡ℎ) =  {

1,𝑓𝑜𝑟[𝑆′(𝑈𝑝,𝑉𝑠 [𝑗],𝑡ℎ  = −1  ]

0,                𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 (5) 

Now the acoustic-LTP is represented in equation 

(6): 

𝐴𝑐𝑜𝑢𝑠𝑡𝑖𝑐 − 𝐿𝑇𝑃𝑝 (𝑉𝑠[𝑗])

=  

{
 
 
 
 

 
 
 
 

∑  

𝑖=1

𝑖=−1

∑ 𝑆𝑢𝑝𝑝𝑒𝑟
′

𝑘=1

𝑘=−1 

[𝑉𝑠  [𝑖, 𝑘] − 𝑉𝑠 [𝑗]]2
𝑙

 
 
 

… ∑  

𝑖=1

𝑖=−1

∑ 𝑆𝑙𝑜𝑤𝑒𝑟
′

𝑘=1

𝑘=−1 

[𝑉𝑠  [𝑖, 𝑘] − 𝑉𝑠 [𝑗]]2
𝑙  

 

      (6) 



Technical Journal, University of Engineering and Technology (UET) Taxila, Pakistan  Vol. 29 No. 2-2024 

ISSN:1813-1786 (Print) 2313-7770 (Online) 

57 

 
Fig. 3. Acoustic-LTP for Bird Sound Classification 

[28] 

 

In figure, the blue spikes represent the acoustic 

signal, with the variations in the line heights and 

patterns representing the magnitude differences 

between the signal and its surrounding neighbors. 

The three-valued code, or ternary pattern, of the 

Acoustic-LTP, could be represented by the positive 

(blue) and negative (white) regions, with zero 

represented by the absence of a line. 

 

IV. RESULTS DISCUSSION 

 

 The experiments for the evaluation of the 

system are performed on a publicly available 

research-based Bird Sound dataset [30]. As shown 

in Table I this dataset contains recordings of 18 

different bird species, each with an average sound 

length of 5 seconds. The research represents the 

dataset of a total of 781 sound samples, ranging from 

25 to 51 recordings per species. Data has been 

collected by the researcher from sources such as the 

Xeno-Canto website and YouTube, maintaining a 

sampling frequency of 48 kHz. The curation process 

ensured that only bird sounds were retained, 

alongside various environmental noises, with a 

focus on prominent bird species' sounds.  

Table II shows the classification results and 

comparison with base paper using different 

classifiers. Here our results using Bagged Trees and 

RUSBoosted Trees ensemble methods are 97.40% 

and 96.70% accuracy respectively which are higher 

than the reported research. [1] Authors used the 

combination of multileveled and handcrafted 

features as the input for machine learning classifiers. 

The model accuracy is achieved by these 

multileveled ternary patterns for feature extraction 

and then selecting the best features for classification.  

We also mentioned the other accuracies achieved by 

our proposed method 92.00% and 83.60% using 

kNN and SVM classifiers respectively. To achieve a 

better accuracy rate from our features fusion 

technique a set of base classifiers are used in 

Ensemble methods. The Bagged Trees Ensemble 

method is an ensemble learning technique mainly 

used to improve the stability of machine learning 

models in terms of accuracy, particularly decision 

trees. The bagging comprises four major steps 

bootstrap sampling, base learner training, ensemble 

aggregation, and the final prediction. The 

randomness in the training phase supports the 

reduction of variance and overfitting.  

Each base learner (decision tree) is trained on a 

slightly different subset of the data, which leads to 

diverse models. By combining these diverse models, 

bagging reduces the risk of overfitting and improves 

the overall performance of the ensemble model. The 

Bagged Trees Ensemble method is a powerful 

technique for improving the accuracy and stability 

of machine learning models and in this research, this 

fulfills and results with a higher accuracy of 97.40%. 

Other classifiers including SVM and kNN are also 

used in this experiment analysis. Table III shows the 

summary of various performance metrics, for the 

best accuracy achieved by the Bagged Trees 

classification task, including True Negatives, True 

Positives, False Positives, False Negatives, Recall, 

Precision, F-1 Score, and False Discovery Rates 

(FDR). 

 

TABLE I. Birds Sound Dataset (Adapted from 

[30]) 

No. Sound class Sound 

IDs 

No. of 

files 

1 Brown Cuckoo-Dove BCD 25 

2 Brown Honeyeate BH 25 

3 Bush Stone-curlew BSC 26 

4 Eastern Whipbird EW 25 

5 Eastern Yellow Robin EYR 60 

6 Grey Fantail GF 40 

7 Rainbow Lorikeet RL 51 

8 Rufous Whistler RW 50 

9 
Shining Bronze 

Cuckoo 
SBC 50 

10 Silvereye SI 50 

11 Striated Pardalote SP 50 

12 
Sulphur-crested 

Cockatoo 
SCC 50 

13 Torresian Crow TC 49 

14 
White-throated 

Honeyeater 
WTH 50 

15 Budgerigar BD 50 

16 The Atlantic Canary TAC 30 

17 Goldfinch Carduel GC 50 

18 Zebra Finch ZF 50 

 

1). Evaluation Criteria 

To evaluate performance Accuracy, Precision, 

Recall rate, F-1 Score, and False Discovery Rates 

have been measured using the following formulas in 

equations (7-11).  

In equation (7) here the measurement of the Precision 

is made by dividing the number of true positive 

predictions by the sum of true and false positive 

predictions.  Precision quantifies the ability of our 

model to avoid false positives showing its reliability 

when it predicts positive instances. A high Precision 
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indicates that the model has a low rate of falsely 

predicting negative instances as positive. In equation 

(8) the Recall Rate is calculated, which evaluates the 

proportion of true positive predictions among all 

actual positive instances. Here the values in Table III 

show that the Recall quantifies the ability of the 

model to capture positive instances. 

For accuracy, the calculations are made as mentioned 

in equation (9) measuring the overall correctness of 

the model's predictions across all available classes of 

the dataset. Accuracy is calculated by dividing the 

sum of true positive predictions and true negative 

predictions by the total number of instances in the 

dataset.  

For F-1Score equation (10) is calculated by 

combining the Precision and Recall into a single 

value. It is calculated by taking the harmonic mean 

of Precision and Recall. This ensures that the F1 

Score penalizes extreme values of Precision or Recall 

when a class imbalance exists.  

Finally, in equation (11) we calculated the  False 

Discovery Rate as it is a statistical measure used to 

control the proportion of false positives among all 

positive predictions made by a model. It is the ratio 

of false positive predictions to the total number of 

positive. False Discovery Rate represents the 

proportion of positive predictions that are false 

positives. Its lower values indicate that the model has 

fewer false positive predictions relative to the total 

number of positive predictions it makes. 

 

True Positive
Precision Rate

True Positive False Positive
=

+
       (7) 

True Positive
Recall Rate

True Positive False Negative
=

+
       (8) 

True Positive True Negative
Accuracy Rate

Total Positive Total Negative

+
=

+
       (9) 

( * )
1 2*

Precision Recall
F Score

Precision Recall
− =

+
                       (10) 

False Positive

True Positive False Positive
False Discovery Rate =

+

  (11) 

 

 

 
Fig. 4. Scatter plot of the Fusion Features over the 

Birds Sound dataset 

 

Table II Accuracy Comparison with Different 

Classifiers 
Features 

Fusion 
Accuracy (%) Achieved 

Acoustic 

LTP20 + 

MFCC10 
+ LPC10 

Bagged 

Trees 

RUSBoos

ted Trees 
kNN SVM  

97.40 96.70 92.00 83.60 

[1] 93.85 -- 95.65 96.67 

 

Table III Performance Metrics Summary for 

Classification Result 

Class ID TN TP FP FN 
Precision

% 

Recall 

% 

F-1 

Score% 
FDR 

BCD 190 7.00 0.00 0.00 100.00 100.00 100.00 0.00 

BH 185 12.00 2.00 0.00 85.71 100.00 92.31 14.29 

BSC 188 7.00 1.00 1.00 87.50 87.50 87.50 12.50 

EW 188 5.00 1.00 3.00 83.33 62.50 71.43 16.67 

EYR 192 5.00 0.00 0.00 100.00 100.00 100.00 0.00 

GF 181 16.00 0.00 0.00 100.00 100.00 100.00 0.00 

RL 185 12.00 0.00 0.00 100.00 100.00 100.00 0.00 

RW 187 10.00 0.00 0.00 100.00 100.00 100.00 0.00 

SBC 183 12.00 0.00 0.00 100.00 100.00 100.00 0.00 

SI 185 11.00 0.00 1.00 100.00 91.67 95.65 0.00 

SP 184 13.00 0.00 0.00 100.00 100.00 100.00 0.00 

SCC 184 13.00 0.00 0.00 100.00 100.00 100.00 0.00 

TC 185 11.00 0.00 1.00 100.00 91.67 95.65 0.00 

WTH 184 13.00 0.00 0.00 100.00 100.00 100.00 0.00 

BD 190 6.00 0.00 1.00 100.00 85.71 92.31 0.00 

TAC 184 13.00 0.00 0.00 100.00 100.00 100.00 0.00 

GC 185 12.00 0.00 0.00 100.00 100.00 100.00 0.00 

ZF 197 12.00 1.00 0.00 92.31 100.00 96.00 7.69 

 

 
Fig. 5. Multiclass evaluation of Feature Fusion over 

Birds Sound dataset 

 

V. CONCLUSION 

 

 Bird Sound Classification using Acoustic 

Signals presents a novel and effective approach to 

identifying bird species based on their vocalizations. 

By the fusion of features from Acoustic LTP, 

MFCC, and LPC coefficients representation, the 

proposed method demonstrates a high accuracy of 

97.4% in classifying bird sounds. Utilizing a 

publicly available dataset of bird sounds, comprising 

recordings of 18 different bird species, the research 

showcases the practical application of the proposed 

model of feature fusion in bioacoustics research. 
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The findings underscore the importance of advanced 

technologies in automating species identification, 

wildlife conservation, and environmental 

monitoring. Moving forward, further research and 

development in this area can lead to more efficient 

and reliable systems for bird sound classification, 

benefiting ornithologists, conservationists, and 

ecosystem management efforts. 
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