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Abstract- The finite element method (FEM) is 

widely used in structural analysis, but complex 

geometries and boundary conditions can result in 

high computational costs. To address this concern, 

this study investigates the use of symmetry-based 

simplification in finite element analysis of a 

rectangular plate with a central circular hole 

subjected to uniaxial tensile loading. The novelty of 

this research lies in quantitatively comparing the von 

Mises stress results of four geometrical 

configurations: full plate, left half plate, lower half 

plate and quarter plate. Simulations were performed 

using the Abaqus under plane stress conditions, and 

results were validated against analytical solutions 

derived from the Kirch’s equations. The comparison 

showed that all models produced von Mises stress 

results with a maximum deviation of less than 5% 

from the analytical values. Notably, the quarter plate 

model yielded reliable results while significantly 

reducing computational time and resources, making 

it an optimal choice for symmetric structures. 
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I. INTRODUCTION 

 

 A plate is a two-dimensional structural 

member that has two of its dimensions significantly 

larger than the third one. It can be considered as a 

two-dimensional variant of a beam which is often 

dealt with as a one-dimensional structural member. 

Plates are categorised into thin and thick plates. If 

the smallest dimension, also referred to as the 

thickness of the plate, is between 0.01 and 0.1 of its 

larger dimensions then it is called a thin plate and if 

the thickness is larger than 0.1 of the larger 

dimensions than the plate is referred as a thick plate. 

Plates might be used to bear loads applied 

perpendicular to their surface or axial loads applied 

along the surface. These axial loads can be tensile or 

compressive in nature. Moreover, the nature of the 

load may also vary depending upon the directions 

that it is applied in. A load applied in one direction 

only is termed as a uniaxial load while a load being 

applied in two directions along the surface of the 

plate is usually called a biaxial load.  

The plane stress condition is an appropriate 

approximation when dealing with plate problems 

that have uniaxial or biaxial surface loads applied on 

them and there is no loading in the perpendicular 

direction. The condition of plane stress simplifies 

the overall stresses by ignoring the normal stress and 

the shear stresses along the perpendicular direction 

of the plate surface. In other words, instead of 

dealing with nine stress components σx, σy, σz, τxy, 

τyx,τyz,τzy,τxz and τzx, we only have to deal with three 

stress components namely, σx, σy, andτxy. 

It is often useful to calculate the maximum and 

minimum normal stresses and maximum and 

minimum shear stresses. These stresses are also 

referred to as the principal stresses. These principal 

stresses act along particular angles from the normal 

direction. These principal stresses are related to the 

normal stresses σx and σy, and the shear stress τxy.  

 

σ1, σ2 =
σx + σy

2
± √(

σx − σy

2
)

2

+ τxy
2             (1) 

 

The von Mises stress is an equivalent stress value 

which is used to predict failure according to the 

distortion energy theory for members subjected to 

static loading. According to the Distortion Energy 

theory, a particular material subjected to any type of 

static load yields when its distortion strain energy 

per unit volume becomes equal to the distortion 

strain energy per unit volume of the material when 

it is subjected to simple tension or compression. The 

total strain energy can be expressed as a sum of 

hydrostatic strain energy which corresponds to the 

change in volume and the distortion strain energy 

which corresponds to the change in shape. 

 

𝑈 = 𝑈ℎ + 𝑈𝑑                                                                (2) 

 

By calculating the total strain energy and the 

hydrostatic strain energy, we can obtain an 
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expression for the distortion strain energy in terms 

of the principal stresses, Young’s modulus and the 

Poisson’s ratio. Once we have the distortion strain 

energy, it can be equated to the distortion strain 

energy of the material under simple tensile loading 

as it fails. This results in the expression of von Mises 

stress: 

 

σv = √σ1
2 + σ2

2 + σ3
2 − σ1σ2 − σ2σ3 − σ1σ3         (3) 

 

For plane stresses this simplifies to: 

 

σv = √σ1
2 + σ2

2 − σ1σ2                                        (4) 

 

This value of von Mises stress is very convenient as 

it can simply be compared with the yield strength of 

the material to predict if it will fail or not [1]. By 

substituting the values of the plane stresses from Eq. 

(1) into Eq. (4), it can be shown that: 

 

σv = √σx
2 + σy

2 − σxσy + 3τxy
2                         (5) 

 

When using stress equations, it is assumed that the 

structural members do not contain any geometric 

discontinuities and are uniform along all 

dimensions. However, in the real world it is simply 

not possible to attain a perfectly uniform structural 

member. Moreover, often machine components 

require certain changes or discontinuities in their 

structures for the purpose of using fasteners such as 

bolts. In a similar manner, shafts require changes in 

their diameter along their length to accommodate 

bearings. Such discontinuities end up disrupting the 

usual stress distributions and create areas of stress 

concentrations at the locations where the geometry 

change takes place [2-3]. These sudden geometric 

changes are often referred as stress raisers. It is not 

quite easy to tackle with such cases theoretically 

therefore we define a stress concentration factor Kt 

to relate the actual maximum stress with the 

calculated stress [4]. 

 

𝐾𝑡 =
σ𝑚𝑎𝑥

σ𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑

                                                         (6) 

 

The values for the stress concentration factor vary 

depending on the type of element that it is used on 

[5], the change in geometry and the nature of the 

load. These values are found out by conducting a 

large number of experiments and then applying 

curve-fitting technique on the data. The usual 

practice in engineering is to use the charts or graphs 

constructed by using these curves. 

The finite element analysis proves to be very useful 

when determining if a part will fail under the given 

loads and boundary condition [6]. 

It can be used to discretise a larger structural 

member into small elements to calculate von Mises 

stresses at all the nodes of these elements. This can 

be easily accomplished for relatively simple 

geometries under simple loading conditions but 

when dealing with complex structural problems, it 

becomes essential to simplify the problem to reduce 

the computation time and work within the 

computational limits of the machine [7]. One way to 

achieve this is simplify three-dimensional problems 

into two-dimensions by using plane stress or plane 

strain conditions. Another method which can be 

utilised involves simplifying the geometry by 

reducing its size according to the axes of symmetry 

it possesses. Generally, for each axis of symmetry 

the size of the model can be reduced to half [8]. 

However, to take advantage of this it must be 

understood what qualifies as an axis of symmetry. 

Along with the geometrical shape, the applied loads 

and the boundary conditions must also be same on 

the both sides of the axis of symmetry [9]. 

In modern engineering design, it is essential to 

balance the fidelity of finite element simulations 

with the constraints of computational resources. 

When analyzing structural elements such as plates 

with discontinuities like holes, it becomes crucial to 

simplify the model without compromising accuracy. 

This study addresses the problem of whether 

symmetry-based reductions in model geometry can 

reliably predict stress distributions particularly von 

Mises stress when compared to a full-model analysis 

and analytical solutions. 

This research work focuses on evaluating the 

effectiveness of symmetry-based simplification in 

finite element analysis of a rectangular plate with a 

central hole under uniaxial loading. The primary 

objectives of this work are to assess the impact of 

geometric simplification along symmetry axes on 

the accuracy of von Mises stress calculations. To 

compare various symmetric configurations with the 

full model against analytical results. To determine 

the optimal balance between computational 

efficiency and accuracy in stress prediction. The 

novelty of this study lies in its comparative approach 

to evaluating stress predictions across different 

symmetrical reductions of a plate with a central 

discontinuity. While symmetry is widely known and 

utilized in FEA, this work quantitatively 

benchmarks the trade-off between computational 

efficiency and accuracy using both numerical and 

analytical methods, which is crucial in modern 

design and optimization workflows [10]. 

 

II. METHODOLOGY 

 

A. Method Description 

A thin plate with a hole at the centre, subjected to 

uniaxial tensile load, was considered for this 

analysis. The plate was assumed to have constant 

cross-section and complete homogeneity in its 

material properties. This three-dimensional problem 

was dealt with as a two-dimensional problem by 

making use of the plane stress conditions. The 
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dimensions along with the magnitude of loads and 

the material properties of the plate are presented in 

the table below. 

 

Table-I:  Dimensions, Loads and Material 

Properties of the Plate 

Parameter Description 

Young’s Modulus (MPa) 70000 

Poisson’s Ratio  0.33 

Length (mm) 140 

Diameter of Hole (mm) 20 

Width (mm) 70 

Thickness (mm) 5 

Uni-axial Tensile Distributed 

Load (MPa) 

50 

 

B. Modelling 

A total number of four models of the plate described 

above were created in Abaqus [11]. The modelling 

of all models involved the same steps except in the 

sketching part. The details of these models are 

presented below: 

 

Table-II  Details of Different Models used for 

Analysis 

Name Size 

Reduction 

Factor  

Partitions  Axes of 

Symmetry 

Full Plate 1 4 2 

Left Half 

Plate 

0.5 2 1 

Lower 

Half Plate 

0.5 2 1 

Quarter 

Plate 

0.25 0 0 

 

All models of the plate were modelled as two-

dimensional deformable shells with the dimensions 

specified above. The models possessing one or two 

axes of symmetry were split into partitions along 

those axes to aid in symmetric meshing [12]. The 

material of the plate was modelled as an elastic and 

isotropic material with specifications already 

discussed. A solid and homogeneous section with 

thickness of 5 mm was assigned to the plate models 

to aid in the calculations when using the plane stress 

model. 

 

C. Meshing 

Non-uniform meshing was chosen to suit the nature 

of the method as the stresses towards the centre were 

predicted to be high and of more importance. The 

outer edges of the models were seeded with 

elements of size 5mm while the edge of the hole was 

assigned an element size of 1mm. The axes of 

symmetry were meshed using single bias with the 

element size decreasing from 5mm to 1mm from the 

outer edges to the edge of the hole. The element 

shape was chosen to be quadrilateral and structured 

meshing was used [13]. The geometric order of the 

shape function was chosen to be linear and plane 

stress elements were used. 

 

D. Application of Loads and Boundary Conditions 

All finished parts were used to create instances in 

their respective assemblies. Steps were created for 

all the models to apply the loads. For the full plate 

model, a pressure load of magnitude -50 (minus sign 

to signify tensile load) was applied on both the left 

and right sides. For the model of the left half plate, 

the pressure load was only applied to the left side 

and on the right side a symmetry boundary condition 

was applied with symmetry in x direction 

(XSYMM) turned on. For the lower half plate 

model, pressure loads of magnitude -50 were 

applied on both sides and a symmetry boundary 

condition was used with symmetry in y direction 

(YSYMM) turned on. Finally for the quarter plate, 

the pressure load of -50 was applied on the left side 

only. Two symmetry boundary conditions were 

utilised in this case on the right side and the top side 

of the model. The one on the right was set at 

symmetry in x direction (XSYMM) while the one on 

the top edge was set at symmetry in y direction 

(YSYMM).   

 

E. Analysis 

Jobs were created for all the models to generate 

output databases. For each model, three paths were 

created. The first path was created from the left edge 

to the edge of the hole. The second path was created 

from the bottom edge to the edge of the hole whereas 

the third path was created along the edge of the hole 

from its left-most point to its bottom-most point. 

These total 12 paths were used to create 12 plots for 

von Mises stresses in the plate by using the XY Data. 

The data generated was exported to Excel to create 

plots.  

 

III. RESULTS 

 

A. Analytical Results 

The analytical solution for the von Mises stresses in 

the uniaxially loaded plate with a hole can be 

calculated by finding out the cylindrical plane stress 

components. To calculate these stress components, 

Kirsch’s Solution was utilised. 

 

σr =
σ

2
(1 − (

𝑎

𝑟
)

2

) +
σ

2
(1 − 4 (

𝑎

𝑟
)

2

+ 3 (
𝑎

𝑟
)

4

) c𝑜𝑠 2θ           (7) 

σθ =
σ

2
(1 + (

𝑎

𝑟
)

2

) −
σ

2
(1 + 3 (

𝑎

𝑟
)

4

) 𝑐𝑜𝑠 2θ                            (8) 

τrθ = −
σ

2
(1 + 2 (

𝑎

𝑟
)

2

− 3 (
𝑎

𝑟
)

4

) 𝑠𝑖𝑛 2θ                                    (9) 

where  a= radius of the hole (mm) 

r= radial distance from the centre of the hole (mm) 

θ= angle from the direction of the load (radians) 

σr= normal stress along radial direction (MPa) 

σθ= normal stress along the angular direction (MPa) 

τrθ= shear stress (MPa) 
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After obtaining the plane stress components, the von 

Mises stresses were calculated using the cylindrical 

form of Eq. (5): 

 

σv = √σr
2 + σθ

2 − σrσθ + 3τrθ
2                      (10) 

 

MATLAB software was used to develop a function 

to calculate the von Mises stress using Eq. (10). The 

function was used in a code to generate the values 

along the same edges that were used to create paths 

in Abaqus. The following plots were obtained for 

von Mises stresses along the horizontal and vertical 

axes of symmetry, and along the edge of the hole. 

The maximum stress was found to occur on the left-

most edge of the hole with a magnitude of 150 MPa. 

 

 
Fig.1. Analytical von Mises Stress Results along 

the Horizontal Axis of Symmetry 

 

 
Fig.2. Analytical von Mises Stress Results along 

the Vertical Axis of Symmetry 

 
Fig.3. Analytical von Mises Stress Results along 

the Edge of the Hole 

 

B. Numerical Results 

1. Full Plate 

The full plate model subjected to uniaxial tensile 

load presented the following deformed shape. The 

colour contours show that the maximum von Mises 

stress is along the top and bottom edge of the hole 

with a magnitude of 150.5 MPa. Similar stress 

concentration behaviour under uniaxial tensile 

loading in plates with central circular holes has been 

numerically demonstrated using FEA [14-15]. 

 

 
Fig.4. Deformed Shape of the Full Plate Model 

  

2. Left Half Plate 

The left half plate model subjected to uniaxial 

tensile load on the left edge and symmetry boundary 

condition on the right presented the following 

deformed shape. The colour contours show that the 

maximum von Mises stress is along the top and 

bottom edge of the notch having a magnitude of 

148.3 MPa. 
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Fig.5. Deformed Shape of Left Half Plate Model 

 

3. Lower Half Plate 

The lower half plate model subjected to uniaxial 

tensile load on both sides edge and symmetry 

boundary condition on the top edge presented the 

following deformed shape. The colour contours 

show that the maximum von Mises stress is along 

the bottom edge of the notch having a magnitude of 

150.4 MPa. 

 

 
Fig.6. Deformed Shape of Lower Half Plate Model 

 

4. Quarter Plate 

The quarter half plate model subjected to uniaxial 

tensile load on the left edge and symmetry boundary 

condition on the right presented the following 

deformed shape. The colour contours show that the 

maximum von Mises stress is along the bottom edge 

of the arc with a magnitude of 148.2 MPa. 

 

 
Fig.7. Deformed Shape of Quarter Plate Model 

IV. DISCUSSION 

 

C. Along Horizontal Axis of Symmetry 

The following plot of the von Mises stress along the 

horizontal axis of symmetry was obtained by using 

all the numerical data along with the analytical 

results. It can be seen that all numerical results are 

in perfect agreement with each other. They almost 

perfectly overlap each other. However, the 

analytical results seem to stay a little lower than the 

numerical results along the entire path with the 

greatest difference among them occurring at about 

56mm from the outer edge along the horizontal axis 

of symmetry. The average stress shown by all the 

numerical results at this point is about 15.44 MPa 

while the analytical results provide a value of 10.85 

MPa. The total error in this case comes out to be 

42.33%. 

 

 
Fig.8. Comparison of the von Mises Stress obtained 

along the Horizontal Axis of Symmetry with 

Numerical and Analytical Methods 

 

D. Along the Vertical Axis of Symmetry 

The following plot of the von Mises stress along the 

vertical axis of symmetry was obtained by using all 

the numerical data along with the analytical results. 

It can be seen that all numerical results are in perfect 

agreement with each other. They almost perfectly 

overlap each other. The only exception being the 

lower half plate which deviates from the rest at the 

end by a difference of about 2 MPa. The analytical 

results show higher stress at the edge. The error 

between the analytical results and the average 

numerical results at this point is about 5%. As we 

move along the edge, Fig. (9) replicates the pattern 

of Fig. (8) with analytical results staying a little 

lower than the numerical results. At the end of the 

edge an interesting point can be observed. The 

numerical results of full plate and lower half plate 

seem to converge better than the others with the 

analytical results. The percentage error of both the 
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lower half plate and the full plate at this point is 

about 0.3% while the error of the other two models 

comes out to be around 1%.  

 

 
Fig.9. Comparison of the von Mises Stress obtained 

along the Vertical Axis of Symmetry with 

Numerical and Analytical Methods 

 

E. Along the Edge of the Hole 

The following plot of the von Mises stress along the 

edge of the hole of the plate was obtained by using 

all the numerical data along with the analytical 

results. It can be seen that all numerical results are 

in good agreement with each other at most of the 

points. At the start, which is the bottom-most edge 

of the hole, the lower half plate and the full plate 

seem to be in better agreement with the analytical 

results than the other two models [16]. Experimental 

studies on strain and stress concentrations in 

composite laminates with central holes show similar 

agreement trends between numerical and physical 

results [17]. It must be noted here that this is the 

same point where Fig. (9) ended. Previously 

discussed figures mostly showed numerically 

calculated stresses to be greater than analytically 

calculated ones but along the edge a different story 

can be seen [18], where the numerical results are 

lesser than the analytical results for half the distance 

along the edge (about one-eighth of the 

circumference around the hole). A significant dip is 

seen in the analytically calculated stresses as they 

effectively drop to zero around 10.5 mm from the 

bottom-most point along the curved edge. The 

difference between the average of all numerical 

results and the analytical value at this point is 19.23 

MPa [19]. If the percentage error was calculated at 

this point, it would come out to be infinity.  

 

 
Fig.10. Comparison of the von Mises Stress 

obtained along the Edge of the Hole with 

Numerical and Analytical Methods 

 

F. Mesh Sizing 

Although finer mesh was used near the stress 

concentration regions, it still failed to capture some 

extreme cases of stress deprivation [20]. To get 

better results around the hole, an even finer mesh 

must be used. However, this might compromise the 

primary objective of saving computational time.  

 

V. CONCLUSION 

 

• All simplified models (left half, lower half, and 

quarter) showed von Mises stress distributions 

that closely matched the full plate model along 

the horizontal and vertical axes of symmetry. 

• Minor deviations (within 5%) occurred near the 

stress concentration regions, particularly along 

the curved edge of the hole. 

• The lower half and full plate models performed 

slightly better at capturing local dips near the 

hole edge 

• Among all models, the quarter plate provided 

the most efficient balance between 

computational cost and accuracy 

• The study confirms that symmetry-based 

reductions can be confidently used in FEM of 

symmetry geometries without significant loss 

of accuracy 
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