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Abstract-  Integrating Artificial Intelligence (AI) 

models into bioinformatics opens new avenues in 

biological data analysis and interpretation. The 

current study follows PRISMA guidelines for the 

search strategy, and the databases covered include 

PubMed, Embase, and Google Scholar for keywords 

that focus on studies published between 2017 and 

2024. As for the aimed bioinformatics domains, we 

explored the uses of AI methodologies such as 

Machine Learning (ML), Deep Learning (DL), and 

Natural Language Processing (NLP) in the broad 

bioinformatics field. Other applications of this 

paradigm are genome sequence analysis, 2D/3D 

protein structure folding and prediction, systems 

biology, customized medicine for individuals, drug 

discovery, medical image analysis, signals and 

pathways processing, clinical data analysis, and 

biomedical text mining. AI systems have effectively 

addressed complex biological problems, from drug 

development to personalized medicine, protein 

structure prediction, and protein folding. In 

summary, this paper examines the rapidly changing 

field of AI tools and algorithms and their integration 

with bioinformatics. It highlights their critical 

function in accelerating biomedical research, 

simplifying data interpretation, and stimulating 

advancements.  
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I. INTRODUCTION 

 

 Bioinformatics plays a critical role in 

bridging the gap between various aspects of 

computational and biological data analysis tasks. It 

reveals latent patterns and significant insights within 

large complex datasets and offers the necessary 

framework and techniques for analyzing, 

interpreting, and deriving valuable knowledge. A 

substantial shift in the development of 

bioinformatics marked the last decade. The methods 

of Artificial Intelligence (AI) have become a driving 

force in innovating several domains. With the 

increase in next-generation sequencing and other 

 
 

sophisticated technologies, biological data, or big 

data, is becoming a big challenge mainly because of 

the high complexity and time taken to analyze the 

data [1-3].  

From past few years, the rapid growth of biological 

dataset generated through omics technologies, next 

generation sequencing, and biomedical images has 

surpassed the analytical capabilities of traditional 

bioinformatics tools. The rapid growth of data has 

created the demand for more intelligent, saleable, 

reliable, and robust system to uncover biological 

meaningful insights. The integration of AI 

technologies such as ML, DL, and NLP have 

emerged as potential solution to address these 

challenges enabling automated feature extraction, 

accurate prediction and pattern recognition [4-5]. 

Numerous machine learning algorithms such as 

Support Vector Machines (SVM), random forest, 

and neural networks are being ensembled when 

dealing with such problems in bioinformatics [6-9]. 

These advanced techniques enable researchers to 

handle complex data to predict meaningful patterns. 

Transcription Factor Binding Sites (TFBSs), protein 

structure analysis, and biomarker prediction are 

some of the key areas for implementing AI 

techniques [10-12]. A few impactful innovations in 

bioinformatics using AI techniques are disease 

diagnosis and personalized medicine [13]. The 

success of AlphaFold has highlighted the capability 

of deep leaning models with predict protein structure 

with high level precision, revolutionize the field of 

structural bioinformatics [14]. By leveraging the AI 

model such as DeepCRISPR and CRISPR-Net, 

researchers has improved the CRISPR-Cas9 

applications by optimizing RNA design and off 

target analysis significantly improving the accuracy 

of genome editing [15]. In genomics AI is enabling 

the process of identifying disease related genes, 

regulatory motif annotation and predicting variant 

effect across diverse population [16]. However, 

current AI systems in bioinformatics still tempered 

by challenges such as data imbalance, model 

interpretability, limited in generalization, and ethical 

concerns including model biasness and data privacy 

[17]. This review provides an overview of the 

cutting-edge AI approaches in bioinformatics, 
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highlighting key advancements and limitations. We 

provide a detailed comparison of recent research, 

emerging trends, and future pathways, and identify 

significant research gaps that still need to be 

addressed in the current literature. In this current 

review, key categories and emerging technologies of 

bioinformatics applications have been summarized. 

AI tools are making an impactful contribution to 

enhancing research and data interpretation for 

forecasting innovation in biomedical sciences. 

Furthermore, Table 1 presents the impact of the AI 

application in bioinformatics. 

 

Table 1: Impact of AI Applications in 

Bioinformatics 
Domain AI 

Application 

Techniques/T

ools 

Impact 

Genomics Disease 

Classification 

DeepVariant 

[18] 

Improved 

accuracy over 

traditional 

methods 

Proteomics Protein 

structure 

prediction 

AlphaFold 

[14] 

Revolutionize 

3D protein 

modeling 

CRISPR/ 

Cas9 

Off-target 

analysis 

DeepCRISPR 

[19] 

Improve 

precision in 

genome 

editing 

Drug 

Discovery 

Molecular 

docking 

Graph Neural 

Networks 

(GNNs) [20] 

Accelerated 

potential drug 

discovery 

Personalized 

Medicine 

Patient 

stratification 

SVM, 

Random 

Forests [21] 

Personalized 

health care 

solutions 

 

In this research, PubMed, Embase, and Google 

Scholar were used for the search strategy to identify 

the relevant articles. Studies published from 2018 to 

2024 were used. The exclusion of the studies that 

were identified when performing the search is well 

illustrated by the PRISMA flowchart in Fig. 1. 

Firstly, using the research strategy, 362 articles were 

identified. subsequently, after filtering the studies 

based on the titles, keywords, and abstracts, we 

disregarded irrelevant studies. Further screening 

was done by reviewing the full texts of the 

remaining studies and discarding conference and 

unpublished papers. Finally, fewer than 60 papers 

were found to be relevant and focused on AI and 

bioinformatics. The keywords used for search are 

“Artificial Intelligence”, “Machine Learning”, 

“Deep Learning”, and others related to 

bioinformatics are “Genomic Analysis”, “Protein 

Structure Prediction”, “Drug Discovery”, 

“Personalized Medicine”, and “Biomedical Signal 

Processing”. Finally, a manual search was 

conducted to retrieve the most relevant and potential 

research. 

The rest of the paper is organized as follows: Section 

2 discusses the related work relevant to the study. 

Section 3 explains the literature review of the 

research. Section 4 presented the evaluation 

parameter and section 5 demonstrated the 

discussion. Section 6 discusses the gap analysis and 

section 7 concludes the conclusion. 

 
Fig. 1. PRISMA Flowchart 

 

II. RELATED WORK 

 

 The first-generation bioinformatics was 

essentially dependent on rule-based recognition, 

hands-on analysis, and statistical patterns for the 

biological information. Nevertheless, the increasing 

scale and complexity of biological sequential data 

generated from next-generation sequencing and 

high-throughput technology have made classical 

approaches insufficient to deal with the data 

generation speed and reliability [5]. The evolution 

from classical bioinformatics to smart is a 

progressive move in the bioinformatics field, mainly 

due to the enhanced employment of Artificial 

Intelligence (AI), Machine Learning (ML), and 

analysis of big data. The involvement of AI and ML 

in the study revealed that it improves the speed and 

precision of analyses, besides presenting unexplored 

possibilities for modeling intricate biological 

structures [22-23]. 

Complex sequential data processing, manual input 

of features, and rigidity are notable drawbacks of 

classical bioinformatics methods. Also, these 

classical approaches are limited when applied to 

noisy data, containing random fluctuations due to 

limited conditions of experiments, imprecision of 

measurement instruments, or biological variations. 

Noise can reduce the accuracy of the analyses made 

using classical methods [23]. There are numerous 

features of advanced bioinformatics that address 

these limitations: (1) Automated feature extraction 

and learning: Manual feature engineering is evaded 

automatically using AI techniques. Relationships 

and hidden patterns in the data can be forecast using 

this technique. (2) Easy adaptability: AI methods are 

highly adaptable and applicable to a wide range of 

biological data analysis tasks, including 

classification, clustering, and regression. (3) State-

of-the-art performance: AI-driven approaches 

deliver top-tier performance with high accuracy and 

precision in various bioinformatics applications, 

such as analysis of protein structure, drug discovery, 

and gene expression [24-26].  

All the constraints and problems that bioinformatics 

and AI encounter are solved effectively when the 

methodologies of the two are integrated. Due to the 

integration, a comprehensive inspection that 

utilization of the strengths of the two disciplines is 

achievable. Firstly, researchers could avoid 
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limitations in traditional computational methods by 

integrating new technologies, such as the integration 

of ML and DL models with bioinformatics. AI 

algorithms can therefore perform better in large-

scale biological information, which extends the 

possibility of fine-tuning biological process 

modeling [27]. Secondly, the model's specificity, 

accuracy, and sensitivity can be enhanced using this 

combination. AI algorithms are effective in finding 

hidden complex patterns and associations with 

biological information that may be overlooked by 

conventional approaches. The integration of AI with 

bioinformatics helps researchers to build better 

models that are not only more accurate but also more 

stable and less likely to fail [28]. Bioinformatics can 

thus be used to find new patterns and relationships 

in biological networks. This concept assists in the 

recognition of biomarkers, drug targets, and disease 

pathways toward bringing efficient personalized 

medicine, as well as the development of drugs [29-

30]. Table 2 presents a comprehensive overview of 

the studies, including datasets, AI models, and key 

findings to enhance the analytical value. 

 

Table 2:  AI Tool for the Bioinformatics Domain 
Ref. Bioinformat

ics domain 

Data AI Model 

used 

Key findings 

[31] Omics Genomic, 

Transcripto

mic, and 

Microbiome 

Data 

Random 

Forest, 

XGBoost, 

AdaBoost, 

KNN, 

LightGBM, 

Neural 

Networks, and 

SHAP 

Achieved 

94% AUC in 

multi-omics 

disease 

prediction 

[32] Omics 107 tumoral 

pancreatic 

samples 

from 

TCGA, 

117,486 

germline 

SNPs 

Random 

Forest and 

Penalized 

Multinomial 

Logistic 

Regression 

Achieved 

91.4% 

classification 

accuracy 

[33] Omics Proteomics 

dataset of 

Saccharomy

ces 

cerevisiae 

Random 

Forest 

Model 

facilitating 

functional 

annotation 

using 

classical 

machine 

learning. 

[34] Transcripto

mics 

DLPFC 

dataset 

Hexagonal 

Convolutional 

Neural 

Network 

Successfully 

segmented 

data using 

spatially 

structured 

inputs 

[35] Transcripto

mics 

mantle cell 

lymphoma, 

diffuse large 

B-cell 

lymphoma 

Logistic 

regression, 

Bayesian 

network, 

CHAID, 

SVM, and 

Multilayer 

perceptron 

Predicted 

gene 

expression-

based disease 

by 

integrating 

multiple 

machine 

learning 

models. 

[36] Proteomics Human and 

yeast dataset 

Hybrid CNN 

+ BiGRU - 

Attention-

based model 

Achieved 

3.8% 

improvement 

in Max-F1 

score over 

the state-of-

the-art model 

SDN2GO 

[37] Proteomics HMR195 

dataset 

BG570 

dataset 

IHHO-CNN-

LSTM and 

Improved 

Harris Hawk 

Optimization 

Achieved 

94.6% 

accuracy in 

predicting 

protein-

coding 

regions. 

[38] Proteomics 271,160 

sequences 

across 543 

protein 

families 

1D-CNN 

combined 

with BiLSTM 

and attention 

mechanisms 

Achieved 

98.3% F1-

score 

outperformin

g traditional 

models. 

[39] Metagenomi

cs 

8,794 

virulent, 

4,992 

antibiotic 

resistance, 

18,296 non-

pathogenic 

sequences 

Support 

Vector 

Machine 

Achieved 

accuracy of 

81.72%. 

[40] Metagenomi

cs 

232 

samples, 

114 

patients, and 

118 

controls. 

Deep neural 

networks for 

phenotypic 

prediction 

Predicted 

phenotype 

from 

metagenomic 

profiles 

[41] System 

Biology 

Gene 

regulation 

datasets for 

ribosome-

binding site 

sequences 

DeepSwarm, 

AutoKeras, 

TPOT for 

architecture 

search and 

optimization 

Proposed 

machine 

learning for 

sequence 

optimization. 

[42] Signal 

Processing 

928 subjects 

aged 22-60 

from New 

Delhi, Cape 

Town, Riga 

Long short-

term memory 

(LSTM), 

CNN, and 

Gramian 

angular field-

CNN (GAF-

CNN) 

Utilized deep 

learning 

models for 

bio signal 

classification 

with more 

precision. 

[43] Biomedical 

Text 

Analysis 

BioCreative 

II GM 

corpus 

LSTM 

framework 

with dual-

channel and 

sentence-level 

reading 

control gates 

Proposed 

NLP-based 

deep learning 

framework 

for text and 

entity 

analysis. 

 

III. LITERATURE REVIEW 

 

 Bioinformatics is a field that combines 

computational and biological data analysis 

techniques. Over the past few years, processing 

biological data such as omics, proteomics, and 

genomics has been challenging for researchers. 

After evaluating AI in bioinformatics, researchers 

can extract valuable insights from the datasets and 

provide promising solutions [44]. In this research, 

the numerous domains of bioinformatics and their 

integration with AI have been discussed and 

organized in separate sections. Fig. 2 demonstrates 

the integration of an AI model into bioinformatics. 

It shows how AI models such as ML, DL, and NLP 

map to the specific domains of bioinformatics, such 

as genomics, proteomics, or drug discovery, and 

what outcomes they generate.  
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Fig. 2. Outcomes of AI-Bioinformatics Integration 

 

A. AI and Omics 

Omics describes a large scientific domain, such as 

genomics, metabolomics, and proteomics, each 

studying the large number of molecules found in 

living organisms. ML and DL are the two subfields 

of AI that are currently revolutionizing omics 

research. It helps to perform complicated data 

analysis and can help researchers explain various 

biological phenomena, diagnose diseases, as well as 

create individual treatment plans [45]. A study 

introduced a machine learning model based on 

eXtreme Gradient Boosting (XGBoost) library to 

classify renal tumors. This model is effective in 

distinguishing pathological subtypes in large-scale 

tissue datasets [46]. AI methods are essential for 

managing the high dimensionality of multi-omics 

data. Moreover, they play a pivotal role in 

uncovering hidden patterns, enhancing biological 

predictions, improving biomedical research, and 

facilitating data-driven decision making and 

advancement in personalized medicine [47].  

 

B. AI and Genomics 

It was found that DL models like Recurrent Neural 

Networks (RNNs) and Convolutional Neural 

Networks (CNNs) are quite efficient in sequence 

analysis as they have been used in Transcription 

Factor Binding Site Prediction (TFBSs), DNA motif 

discovery, and non-coding RNA element prediction. 

Likewise, CNNs split sequences, employ filters to 

examine parts, and define essential characteristics 

that establish labels, including DNA binding targets. 

Deep Variant uses CNNs for variant calling from the 

raw sequencing data, absolving it from these 

traditional problems like sample preparation, 

sequencing technology, and biological variability, 

and getting higher accuracy in variant calling [16]. 

CNNs are widely being used as a sequence classifier 

due to their ability to learn local spatial features from 

the dataset. A typical CNN contains a layered 

architecture containing an input layer, a convolution 

layer, an activation layer, and a pooling layer, 

followed by a dense layer [48]. The formulation of 

the convolution layer is as follows: 

𝑧𝑖 = ∫(∑ 𝑤𝑗 . 𝑥𝑖+𝑗 +𝑘−1
𝑗=0 𝑏)                               (1) 

where b in the equation represents the biasness, x is 

the input sequence, w is the size of the kernel, and f 

is the non-linear function. On the other hand, RNNs 

proceed through the character of the sequence by 

character and depend on the nearby context of a 

sequence to differentiate between the two areas, 

such as the exons and the introns in the DNA 

sequence [14]. More recently, researchers integrated 

data from different genomic platforms, including 

RNASeq, SNP, and CNV, with clinical follow-up 

data from TCGA. They used Random Forest (RF) 

analysis and found that the six-gene signature, made 

of CD24, PRRG1, MRGPRX, CASP8, RCC2, and 

IQSEC3, stands as one of the superior prognostic 

predictors for BC patients. These may help provide 

diagnostic and prognostic information, as well as 

provide the basis for the identification of targeted 

therapeutic pathways among the patient population 

[49].  

 

C. AI and Transcriptomics 

A comprehensive analysis of RNA transcription 

focusing on its structure, interaction, and functions 

in the expression of a specific gene. Integrating AI 

in this domain has significantly increased the 

prediction accuracy of complex patterns found in 

RNA sequences [50]. Deep learning models such as 

CNN and RNN are widely being used to address 

challenges such as complex pattern predictions, 

RNA sequence analysis, RNA and protein 

interaction, and analysis of non-coding RNA [51-

52]. Takeshita proposed a machine learning-based 

framework for hormone receptor-positive breast 

cancer using logistic regression and hierarchical 

clustering, and predicted nine gene expressions, 

including C1orf64, AGL, CYP4F22, and others 

linked with the pathways of breast cancer of triple-

negative value. Their proposed model efficiently 

predicts and highlights the tumor immune 

environments and pathways across different groups 

of patients. Further, the prediction accuracy was 

supported by chemotherapy and endocrine therapy 

[53-54]. 

 

D. AI and Epigenomics  

The study of gene expression modification that 

occurs without changes in DNA sequence. AI 

enables researchers to handle large, complex data of 

sequencing produced from ChIP-seq and DNA 

methylation studies. CNNs are widely used to 

predict complex patterns in large sequences, 

including enhancers, transcription factor binding 

sites, promoter regions, and regulatory motifs. SVM 

has also been applied to predict disease risk at the 

individual level and facilitate early prevention 

strategies [55-56]. DNA methylation, histone-based 

modifications, human genome data, and RNA 

sequence data have been extracted using R 

programming for The Cancer Genome Atlas 

(TCGA). Nine different techniques were applied 

alongside eight different ML classification methods 

to determine the most precise model while focusing 
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on 1000 features across the data. To determine the 

most optimal model, k-fold cross-validation with 

k=5 has been applied and tested on different training 

and testing ratios by selecting 140 features using the 

Relief F feature selection method combined with the 

XGboost classification algorithm. The model 

achieved an accuracy of more than 90% and 

demonstrated an Area Under the Curve (AUC) for 

predicting liver cancer [57]. 

 

E. AI and Proteomics 

The domain of proteomics mainly focuses on the 

structure, biological function, and protein 

interactions with DNA. AI is being used as a 

powerful adopted tool for unveiling the complex 

patterns present in macromolecules. Graph Neural 

Networks (GNNs) and CNNs are employed for the 

prediction of protein structure, protein-protein 

interaction, and drug development for targeted 

therapies and drug discovery [58-59]. Recent studies 

integrate machine learning models with microfluidic 

chips to analyze Extracellular Vesicles (EVs) in 

Triple-Negative Breast Cancer (TNBC). 

Researchers examined 100 breast cancer patients 

and 30 healthy individuals using microfluidic chips 

to isolate tumor-derived EVs to analyze EV 

proteomes. The machine learning model predicted 

distinct protein signatures differentiating TNBC 

patients from healthy individuals. This study opens 

up a new door by serving as a diagnostic tool and 

increasing recurrence in TNBC patients [60]. 

 

F. AI and Metagenomics 

AI is transforming the field of metagenomics, which 

mainly focuses on analyzing the collective genomes 

of microbial communities. Machine learning 

algorithms, such as random forest and deep learning 

algorithms, address complex tasks like taxonomic 

classification and functional prediction [61]. Harris 

proposed a random forest model to identify large 

metagenomics datasets and achieved 91% accuracy 

in identifying the sample origin and predicting new 

samples while focusing on taxonomic profiles. This 

study highlights the ability of AI models to unveil 

hidden patterns of the microbiome and their effects 

on human health [50]. Random forest classification 

was proposed in a study to demonstrate improved 

accuracy in predicting colorectal cancer status in 

sequence data. Improving the predictive accuracy 

for colorectal cancer detection, AI-based novel 

approaches were used to integrate relative 

abundance profiles for both known and newly 

discovered microbes [62]. 

 

G. AI and CRISPR Data Analysis 

CRISPR (clustered regularly interspaced short 

palindromic repeats) is a genome editing method 

extensively used in functional genetic research and 

has a significant impact on biomedical translation 

applications [15]. Integration and advancement in 

AI help enhance genome editing and improve 

precision, efficiency, and address diseases such as 

cell anemia.  DeepCRISPR, CRISTA, and DeepHF 

are a few of the deep learning-based methods that 

are capable of predicting optimal guide RNAs for 

specific sequences. CRISPR and AI integration are 

revolutionizing healthcare by enhancing precise and 

personalized treatments. AI-based CRISPR system 

enables researchers to target genes that are pathways 

for disease. AlphaMissense is an ML model that 

predicts genetic variants for pathogenicity with high 

accuracy and surpasses traditional methods, and 

improves personalized medicine [63]. A study 

demonstrated that deep learning algorithms can be 

applied to identify rare diseases and their association 

with candidate genes. These CRISPR-based genetic 

modifications can be used to predict mutations and 

related genes. AI and CRISPR integration for 

genetic profiling can help analyze individual 

diseases, enabling timely interventions. These 

methods are delivering precise and reliable 

healthcare solutions with efficiency [64-65]. 

 

H. AI and System Biology 

Network and system biology are the fields that 

provide a comprehensive understanding of 

biological systems by examining their structures, 

functions, and interactions. Data from multi-omics 

and its integration with AI enables researchers to 

model complex biological systems, focusing on 

valuable insights and relationships of genes, RNAs, 

proteins, and individual cells. AI algorithms, 

including ML and DL, are widely being used to 

handle the complex data of biological systems [66-

67]. The objective of bioinformatics is the 

integration of diverse biological data, which is 

referred to as omics data. Despite notable 

advancements, AI methods encounter challenges in 

effectively managing this integration. Addressing 

these limitations remains the priority for future 

research while emphasizing the development of 

approaches to enhance the reliability and utilization 

of integration methods. Utilizing strict constraints 

on parameter and graph representation, with an 

ongoing effort, can be used to address these 

challenges while focusing on the integration and 

development of ML algorithms [45] [68]. A study 

shows the potential of ML algorithms when 

combined with system biology analysis in predicting 

cancer cell lines. Naïve Bayes and KNN algorithms 

show promising results while classifying cisplatin-

resistant and sensitive samples. These findings 

provide the foundation for future experiments and 

development in this field [69]. AI transforms system 

biology by accelerating data analysis, prediction, 

and customized medicine. However, utilizing the 

full potential of AI models, several challenges, 

including data quantity, data-driven interpretation, 

ethical concerns, and privacy challenges related to 

data usage, may introduce biases in automation [70].  
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I. AI and Customized Medicine 

The precision and customized medicine approach 

for medical treatment and proactive prevention 

strategies takes into account an individual's unique 

genetic information, environmental influences, and 

lifestyle. Artificial intelligence is advancing in every 

field day by day, and it is transforming the field of 

personalized medicine as well, by providing distinct 

opportunities for tailored medical care for individual 

patients [71]. Technologies based on AI, such as ML 

and DL algorithms, aid in finding and validating 

biomarkers by effectively analyzing extensive 

biological and clinical trial datasets, uncovering 

hidden patterns, and producing personalized 

treatment [72]. AI technologies, when combined 

with genomics and molecular biology, are 

improving customized medicine, making it more 

precise and reliable. This method focuses on finding 

diagnostic and hidden predictive biomarkers to 

enable patients to get custom-targeted medicines. 

[73]. To examine important gene markers in 

colorectal cancer, researchers used a variety of 

machine learning methods, such as logistic 

regression, support vector machines, decision trees, 

k-nearest neighbors, and random forest [58]. The 

random forest algorithm was the most successful for 

this prediction test because it showed the best 

accuracy and AUC. Differentially Expressed Genes 

(DEGs) and potential prognostic biomarkers in 

pancreatic cancer have been subjected to analysis 

using machine learning approaches such as RF, max 

voting, XGBoost, GBM, and AdaBoost. XGBoot 

surpasses all other models in processing speed and 

accuracy [74]. A study also reported that ML 

techniques, including SVM, random forest, logistic 

regression, and naïve bayes, are reliable models for 

biomedical data analysis [60]. High throughput 

screening has enhanced the detection of molecular 

interaction advancement in AI, but there still exist 

numerous possibilities and complexities that make 

targeted drug pairs and drug discovery a long and 

costly process [9]. For example, graph neural 

networks can predict potential drug molecules with 

targets while developing drugs. Generative 

adversarial networks increase the discovery process 

by generating novel drug molecules with the 

required properties. Moreover, AI models can 

forecast drug treatment efficiency, resulting in 

optimized target therapy and personalized medicines 

[75-76]. 

 

J. AI and Signal Interpretation  

Signal processing involves the precise manipulation, 

comprehensive analysis, and interpretation of 

signals. Cardiac Electrocardiogram (ECG), 

Electroencephalogram (EEG), and Cardiac 

Electromyogram (EMG) are the types of 

physiological data signals that are being used for 

research and development. AI models can learn 

complex patterns in signal data and extract 

meaningful information while reducing noise and 

improving predictions in the health sector [77-78]. 

 

 
Fig. 2. Customized Medicine 

 

The deep belief network has been utilized to analyze 

the EEG signals' frequency for the classification of 

motor images of the left and right hands. This study 

applies two AI models, SVM and DBN, and 

highlights that the DBN outperforms the SVM in all 

test cases. This study offers a deep learning method 

for correctly categorizing motor image-based EEG 

data [79]. A semi-supervised deep learning 

framework has also been proposed by researchers 

for recognizing states for EEG signals. This study 

outperforms traditional methods while handling 

EEG classification accuracy and improved 

adaptability, and performance [80].  

 

K. AI in Biomedical Text Analysis 

The vast literature of biomedical research provides a 

crucial knowledge base for researchers. To extract 

valuable insights and patterns from a variety of 

biomedical texts, including academic papers, 

clinical notes, and medical records, text mining 

approaches are being used. The pipeline combines 

two techniques, including natural language 

processing and machine learning for text translation 

and classification, respectively, alongside data 

mining techniques to identify underlying patterns 

and relationships. Named entity recognition (NER) 

is an NLP technique that is essential for extracting 

meaningful knowledge when accurately identifying 

entities such as gene sequences, protein sequences, 

and sequences of diseases. Categorizing and 

detecting named entities in the text while using the 

NER technique enables unmanned systems to 

accurately interpret and extract meaningful 

sequence patterns [81]. Several ML methods, such 

as SVM, Markov Models, and Maximum Entropy 

(ME), are widely being used for recognizing NER 

tasks [82-84]. Deep learning models such as CNN 

are extensively being used in biomedical text 

analysis. Application of CNN in the biomedical text 

is Transcription Factors Binding Sites (TFBSs) 
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classification, promoter analysis, telomeric analysis, 

and recurring pattern classification [85]. 

 

IV. PERFORMANCE EVALUATION 

 

 Numerous mathematical and evaluation 

metrics are employed to ensure the AI model's 

effectiveness and reliability when applied to the 

bioinformatics domain. To effectively evaluate the 

performance of a model, these metrics are crucial, 

especially in classification and regression tasks. 

Below are a few evaluation parameters that present 

the AI model performance [86-89]. The evaluation 

parameters are as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
TP+TN

TP+TN+FP+FN
X 100                   (2) 

 

Sensitivity/Recall =
TP

TP+FN
X 100       (3)  

 

Precision =
TP

TP+FP
X 100          (4) 

 

F1 − Score = 2 x
Precison ∗ Recall

Precison +Recall
X 100      (5) 

 

where TP stands for true positive, TN stands for true 

negative, FP stands for false positive, and FN stands 

for false negative. Loss functions such as Cross-

entropy and mean squared error (MSE) are used for 

classification and regression to optimize the model's 

prediction performance.  

Cross-entropy loss can be represented as: 

𝐿 = − ∑ 𝑦𝑖 log(𝑦̂𝑖)𝑛
𝑖=1             (6) 

Mean squared error (MSE) can be represented as: 

𝐿 =
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑖)̂

2𝑛

𝑖=1
            (7) 

 

V. DISCUSSION 

 

 Traditional bioinformatics methods are 

limited in handling complex and rapid biomedical 

data while relying only on pre-defined rules and a 

lot of human intervention. AI-driven approaches can 

process large and complex datasets, uncover hidden 

patterns, and improve prediction accuracy. Machine 

learning models can process large datasets, learn 

hidden patterns, and make accurate predictions. AI 

methods offer potential transformation in 

bioinformatics, such as personalized medicine, drug 

discovery, and identification of biological pathways 

[35] [39]. AI-driven approaches are promising in 

transforming bioinformatics data into valuable 

insights while overcoming the traditional methods in 

numerous fields of biomedical. However, to fully 

utilize the power of AI, a few challenges need to be 

addressed, such as data quality, model 

interpretability, and ethical considerations. 

Overcoming these challenges will help biomedical 

research and improve human health. 

 

VI. GAP ANALYSIS 

 

Despite significant advancements, several research 

gaps and challenges exist in integrating AI into 

bioinformatics. AI models such as deep neural 

networks are considered black boxes and show high 

performance in prediction tasks. The lack of 

interpretability of these models restricts adoption in 

crucial medical situations. The development of AI 

models, such as explainable AI (XAI), ensures 

interpretability with high accuracy. Most AI models 

are data-specific with poor generalization. In the 

future, researchers must focus on the development 

of robust AI models with good generalization. AI 

models have yielded significant improvements in 

single-omics data, while multi-omics data 

integration is still emerging. The key challenges are 

to make these heterogeneous data feature selection 

and normalization. AI models rely on clinical and 

genetic datasets, making privacy and security 

crucial. To address these challenges, federated 

learning offers decentralized learning that makes 

personalized information secure. Transfer learning 

has also demonstrated promising results in 

bioinformatics, but its applications are still limited. 

These pre-trained models offer significant potential 

to increase predictive performance and reduce 

computational cost in domain-specific tasks. 

 

VII. CONCLUSIONS 

 

 This review emphasized the pivotal role of AI 

in the field of bioinformatics, bridging biological 

data with computational methods. It covers a wide 

range of applications of AI techniques, including 

machine learning, deep learning, and natural 

language processing, and their impact on genome 

sequence analysis, protein folding and structure 

study, drug discovery, customized medicine, signal 

processing, and biomedical image analysis. The 

findings of this study show the contribution of AI in 

clinical and biomedical research, enhancing the 

performance in the prediction of pathways and 

personalized therapies. Transformers, Explainable 

AI (XAI), and multimodal learning are the 

promising domains of AI that offer robust 

performance, leading to innovation. The integration 

of these efficient and interpretable models 

encourages researchers to address complex 

problems in biomedical science. 
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