
module requires detailed testing. When software is
released with errors, huge amount of time and cost is
invested to make it error free. Therefore, it is preferable
to detect them at an early stage. Cost of developing
software is very high and when high amounts are
invested to build software, a lot of factors are
considered to develop it perfectly. The goals of SDP are
(i) to predict defects in early stages, (ii) to identify the
important modules that need more resources and
attention, (iii) to improve the quality of software, (iv) to
reduce the cost and (v) to provide effective software
management. An overview of SDP process is shown is
Fig 1. Here, the datasets mostly used are gathered from
repositories available for SDP like Promise, UCI and
any software releases. Method or code level metrics are
extracted, e.g. Lines of Code (LOC), Branch count etc.
Generally, a scheme is developed that has its basis in
some of the existing techniques and approaches such as
Naïve Bayes (NB), Association Rules, and Neural
Networks (NN). The performance of the proposed
approach is evaluated by the use of evaluation
measures e.g. Area under curve (AUC), F-Measure etc.

Fig. 1. Process of Software Defect Prediction

 Usually software has faults/errors during
development phases and efforts are needed to reduce
these. Early prediction of defects is very necessary to
reduce the cost. It helps the practitioners to devote extra
resources and time to the non-defective software
modules. In the era of Information Technology,
software development is getting complex day by day
and with increased complexity, the probability of faults
are getting higher. Software is composed of many
modules and during this process modules can be
marked as likely to be defective or non-defective.
When a module is predicted to be defected, more efforts
and attention is paid to it. Many researchers from
different domains are proposing variety of frameworks,
models and techniques for the defect prediction.
Researchers are also enhancing existing techniques and
models for better prediction. Despite of all the efforts
being performed, SDP research area still has many
ambiguities. Although a number of schemes, models

63

Abstract-Software defect prediction has been an
interest of research era because predicting defects in
early stages improves software quality with reduced
cost and effective software management. Researchers
from different domains are contributing their efforts to
propose an approach that effectively and efficiently
help in this regard. Different machine learning
techniques have been applied to remove unnecessary
and fault data from defect prone modules and many
approaches, frameworks, methods and models have
been proposed using different datasets, metrics, and
evaluation strategies. In this paper, 40 Clarivate
Analytics indexed impact factor journal papers from
2009-2018 are reviewed for the upcoming practitioners
of software defect prediction. Review in this paper
reflects some of the work that has been done in software
defect prediction so far. Detailed classification
taxonomy of the machine learning techniques used for
software defect prediction has been presented.
Defective, non-defective datasets along with the
classification of the metrics used are part of the review.
Despite of all works and efforts done in this research
domain, there still exist many ambiguities because no
single technique and method dominates due to the
imbalance nature of different datasets and methods. A
lot of research work is needed to overcome the existing
issues.

Keywords-Classification, Machine Learning, Software
Metrics, Software Defect Prediction

I. INTRODUCTION

 Software Defect Prediction (SDP) has been seen as
the most important research area since the beginning of
software era. It plays an important role for enhancing
the software quality. Testing is considered as the most
important phase of software development life cycle
(SDLC) and it is closely related with software quality.
Software quality is improved when we have an early
prediction of errors that are expected to occur in future.
It is very suitable to detect the defects in early stages of
SDLC to reduce the cost and to increase the
effectiveness of the testing process. When defects are
detected before the software release, they can be
removed before the deployment of the software. Defect
prone modules are required to be identified at earlier
stages so that practitioners can have an idea that which

A Review on Machine Learning Techniques for
Software Defect Prediction

1 2 3 4F. Hassan , S. Farhan , M. A. Fahiem , H. Tauseef

1,2,3,4Computer Science Department, Lahore College for Women University, Lahore
2saifar79@hotmail.com

Technical Journal, University of Engineering and Technology (UET) Taxila, Pakistan Vol. 23 No. 2-2018
ISSN:1813-1786 (Print) 2313-7770 (Online)

Defective

Non-defective

Dataset

Selection of

Metrics

Proposed

Approach

Selection of

Evaluation

Measures

Results

64

investigating different techniques to build a generic
framework/model that can be used to detect the failures
but the imbalance nature of datasets is the biggest
hurdle in the way. Many researchers also came up with
the solutions to deal with the imbalance nature but there
are various factors that hinder the smooth performance
of the specified solution. Best classifiers when run on
different datasets can result in poor results. There exists
many machine learning and statistical techniques in
literature that have been used for SDP. Widely used
techniques for SDP are presented in Fig 2.
 Rest of the paper is organized as follows: Section II
describes methodology of this research. Section III
presents findings considering various aspects of SDP.
Section IV presents a review of research articles used in
this research. Section V is the comparative analysis of
review articles already published in literature. Section
VI is the summary of review and section VII provides
conclusion of this study.

II. METHODOLOGY

 In this paper, several strategies are applied to
retrieve related publications. The search started with
key terms 'software defect prediction' and 'machine
learning'. The search was restricted for the past 10 years
i.e. 2009-2018. Only Clarivate Analytics indexed
journal articles are selected. The steps for search
strategy that have been followed for the review can be
seen in Fig 3.

and frameworks are proposed, no single technique or
model dominates as each has its own limitations.
Among all the domains, machine learning and statistics
are considered to be the most important. Different
machine learning algorithms and statistical techniques
are applied to detect the defects and to remove
unnecessary and faulty data in a specific module that is
making the module more likely to be defective.
Different datasets are available publicly to help the
practitioners come up with improved and better results.
Different attributes of these datasets are considered to
be associated with defective or non-defective modules.
Different performance evaluation measures help the
researchers to check the performance of the applied
technique, model or algorithm. All these are essence of
this review.
 SDP is a hot topic since many years and different
techniques from various domains have been applied to
predict the error prone modules [i]. Defects in software
can be predicted by a number of machine learning
algorithms. Different algorithms result in varying
performance on different dataset. To decide, which
algorithm and technique should be used for defect
prediction is a difficult task. There exists no clear and
straight forward answer to this question as same
technique when applied on different dataset with
different metric comes up in different results. Hence, it
is stated by many researchers that current state of the art
in SDP is still missing and no single technique is the
king to dominate. Although, researchers are

Technical Journal, University of Engineering and Technology (UET) Taxila, Pakistan Vol. 23 No. 2-2018
ISSN:1813-1786 (Print) 2313-7770 (Online)

Fig. 2. Classification taxonomy of machine learning and statistical techniques used for Software Defect Prediction

Statistical
Algorithms

Regression

Linear
Regression

Stepwise
Regression

Ordinary
Least Square
Regression

Multivariate
Adaptive

Regression
Splines

Techniques used
for Software

Defect Prediction

Machine Learning
Algorithms

Regularization
Algorithm

Ridge R

Elastic Net

Linear Angle
Regression

Least Absolute
Shrintage &

Selection Operator

Bayesian
Algorithms

Bayesian
Network

Gaussian Naive
Bayes

Multinomial
Naive Bayes

Bayesian Belief
Network

Avg. 1
Dependence
Estimators

Naive Bayes

Augmented
Naive Bayes

Decision Tree
Algorithms

Iterative
Dichotomiser

Conditional
Inference

Trees

Decision
Stamp

C4.0

Classification
& Regression

Tree

CHi-squared
Automatic
Interaction
Detector

Clustering
Algorithms

Artificial Neural
Netowks

K-Means Perceptron

K-Medians Back-
Propagation

Hierarchical
Clustering Hopfield

Network

Expectation
Maximization RBFN

Ensemble Learning
Algorithms

Deep
Learning

Algorithms

Boosting

BaggingStacked
Auto-

Encoders
AdaBoost

Deep
Boltzmann
Machine

Random
Forest

StackingDeep Belief
Networks

Convolutional
Neural

Network

65

V(G): Cyclometric complexity, Ev(G): Essential cyclometric
complexity, Iv (G): Design complexity, LOC: Lines of Code, WMC:
Weighted methods per Class, DIT: Depth of inheritance tree, NOC:
Number of children, CBO: Coupling between objects, RFC:
Response for a Class, LCOM: Lack of cohesion in methods

Fig. 4. Hierarchy of most widely used Metrics for
Software Defect Prediction

Fig. 5. The Percentage of various Metrics, Datasets
and Performance Measures used in SDP studies

B. Datasets
 Dataset is a collection of information that is used in
the specific field for the problem under consideration.
Many datasets are available publicly for the
practitioners of SDP. The problem is the unavailability
of standard datasets that can be used in SDP studies.
Many practitioners proposed different frameworks by
using different datasets and it is very hard to predict and
access those frameworks because of the different
nature of datasets used to develop it. Percentage of
datasets most commonly used in different studies for
SDP has been given in Fig. 5 and statistical analysis is
based on the relevant SDP studies [iii-xxxii].
 The problem of unavailability of standard datasets
is present from ages and has been widely faced by the
practitioners of machine learning. For this purpose,
UCI repositories were developed to help the
practitioners. The PROMISE repository is the inspired
version of the UCI repository developed in 2005.
NASA datasets with default ARFF file format are

Fig. 3. Methodology used for Review

III. FINDINGS

 This section presents our finding relating to SDP
and machine learning. It comprises of three subsections
i.e. software metrics, datasets and performance
evaluation measures.

A. Software Metrics
 A number of software metrics exist in literature for
the prediction of software defects. Two classes of
software metrics most widely used in SDP are method
level and class level metrics as presented in Fig 4.
 System level, package level, project level and
design level metrics are also part of software metrics
but they have not been used in SDP so far because of the
nature of their attributes. To analyze a model, LOC and
Function Point metric are also used. CK [ii] is the code
level metrics. Percentages of metrics used in different
studies are presented in Fig 5, as used in different
journal papers.

Technical Journal, University of Engineering and Technology (UET) Taxila, Pakistan Vol. 23 No. 2-2018
ISSN:1813-1786 (Print) 2313-7770 (Online)

Springer
ACM

Science Direct
Google Scholar

IEEE

SDP
ML

2009-2018
Journal
Papers

According to need
and interest

Start

Select Digital
Libraries

Select keywords

Apply Filters

Exclude/
Include

Yes

No

NoIndexed
Journals

Yes

Make a final list

End

Metrics used for SDP

Method Level Metrics Class Level Metrics

McCabe
Complexity

V(G)
Ev(G)
Iv(G)
LOC

Halstead
Measures

Base Measures
Derived Measures

LOC Measures

Mood

MHF
AHF
MV
AV
C

Cohesion

LCOM
N-CR
CD

TCC
LLC

CK

WMC
DIP
NOC
CBO
RFC

LCOM

Metrics Method level

Class level

Others

36%30%

34%

Datasets
NASA

ECLIPSE

OTHERS

55%

32%

13%

Performance Measure F-Measure

Recall

AUC

Accuracy

Precision

Sensitivity

Specificity

Others

10%
12% 14%

11%

17%

16%

12%

8%

66

aspects.
• Detailed classification of machine learning

techniques and metrics that are used in SDP have
been given

• Only Clarivate Analytics indexed Journal papers
in the duration 2014 - 2016 have been reviewed
(before this 1990 - 2013 papers were reviewed)

• Articles belonging to deep learning are also the
part of the review

 The percentage of distribution of our selected
journals according to the year published can be seen in
Fig. 6.
 The effects of dataset size and selected metrics on
SDP are studied by [xxxiii]. Five public NASA datasets
have been used. After examining 9 classifiers, Random
Forest (RF) came up with the highest prediction
performance for larger datasets and NB came out to be
the best one for smaller datasets. To cater class
imbalance problem, SMOTE and Resample with
substitution techniques are used with Fisher linear
Discriminant Analysis (FLDA) for attribute selection
[xxxiv]. Artificial neural network (ANN), support
vector machine (SVM), NB and RF turned out to be
performing better with Resample-FLDA.
 Action based defect prediction (ABDP) includes
fault patterns and corresponding pattern of actions to
find out the causes of faults before their occurrence [iv].
This approach is based on association rules and
decision trees. A modeling techniques, in terms of cost
and fault proneness, for java systems using ensemble
learning methods is proposed by [vii] . The quality of
the effective model is highly dependent on the criteria
used to build it. When ensemble learner, AdaBoost, is
combined with decision tree algorithm, C4.5, it
produced better results. A framework for SDP is
proposed by [xxxv] that consisted of two parts i.e.
evaluation scheme and defect prediction. Twelve
learning schemes have been compared for evaluation.
NASA and AR datasets are used with Halstead
attributes as well as McCabe complexity measures.
ROC measures are used for evaluation. Cohesion,
complexity and coupling (CCC) are considered to be
the best metrics for SDP [ix]. Before this research, there
was no framework to utilize CCC by considering
security aspects to predict the failures automatically for
software development. Fifty two releases of Mozilla
fire fox are used as a dataset. Ensemble learning
algorithms for the improved fault prediction by
considering metrics as an important parameter in SDP
are presented in [xi]. Seventeen ensemble methods
have been used to combine all metrics instead of using
single one. Filter based Ranking technique is used to
evaluate and predict the model performance by
selecting best attributes. A systematic review in the
duration 2000 - 2010 on 208 studies on SDP is
conducted by [xxxvi]. Thirty six of these studies are
extracted on the common and important factors for
evaluation. Independent variables that should be

widely used for SDP and are publicly available on
NASA MDP repository. Some NASA datasets are also
available on PROMISE repository. NASA datasets are
the mostly widely used in SDP research [xxi]. Before
2005, most of the studies were carried out using limited
sources of private datasets. From the foundation of
PROMISE and other publicly available repositories,
the rate of public datasets is getting higher. According
to [xxv] only 35.21% of the studies used private
datasets. Different defective and non-defective NASA
datasets along with their properties are given in Table I
which is obtained from Tuned IT platform.
C. Performance Evaluation Measures
 When an approach is proposed, it needs to be
evaluated to check its effectiveness and efficiency.
Different researchers used different evaluation
strategies to access the performance of their proposed
approaches. Fig. 5 shows the percentage of evaluation
measures in different studies. For reliable SDP, many
performance evaluation metrics exists including
accuracy, AUC, F-measure, Recall etc. that helps to
check the efficiency of the proposed scheme.
 Ranking based evaluation for the feature selection
scenarios is another measure for evaluation. True
Positive (TP), True Negative (TN), False Positive (FP),
False Negative (FN), True Positive Rate (TPR), False
Positive Rate (FPR), True Negative Rate (TNR) and
Positive Predicted Value (PPV) are some common
terms used in performance measures. Performance
evaluation measures are given in Table II.

TABLE I

NASA DATASETS AND ITS CHARACTERISTICS

IV. PAPERS IN REVIEW

 40 impact factor journal papers on SDP published
from 2009 - 2018 have been selected in this study. This
review paper indicates the relevant work done in the
specified duration by the practitioners and researchers.
It is different from other reviews in the following

Technical Journal, University of Engineering and Technology (UET) Taxila, Pakistan Vol. 23 No. 2-2018
ISSN:1813-1786 (Print) 2313-7770 (Online)

KC1

KC2

KC3

JM1

CM1

AR1

MW1

PC1

NASA
Datasets

Storage
management

Storage
management

Storage
management

Real time
predictive

ground
system

NASA space
craft

instrument
Embedded
software
A zero
gravity

experiment
Flight

software

Description

22

22

40

22

22

30

38

22

Attributes

326
 (15.4%)

105
(20.1%)

36
(18.5%)

2106
 (19.3%)

49
(9.83%)

9 (7.43%)

27
(10.5%)

77
 (6.94%)

Defective
Non-

Defective

1783
(84.5%)

415
(79.8%)

158
(81.4%)

8779
(80.6%)

449
(90.1%)

112
(92.5%)

228
(89.4%)

1032
(93.05 %)

67

 The most important factors that influence and
enhance SDP are classifiers, datasets, metrics and
performance evaluation parameters [xvi]. Researcher
group is another important factor to be considered as it
has the biggest impact on SDP. The researcher's
biasness is checked by performing a co-author analysis.
A novel classification model, defect prediction using
relational association rules (DPRAR), is proposed that
predicted the existing correlations between different
attributes of NASA dataset [xviii]. An algorithm,
average probability ensemble (APE), combines feature
selection with ensemble learning to overcome the
redundant features and the problem of imbalance data
[xx]. When classifying defective modules, the selection
of features is done very carefully for effective defect
classification. A systematic review based on 64 primary
studies published during 1991- 2013 is conducted by
[xxi]. The focused feature in this review is the
performance capability of the machine learning
techniques in different contexts. Three soft computing
methods i.e. artificial neuro fuzzy interface system
(ANFIS), SVM and ANN are compared in [xxvi].
Expert knowledge has been combined with the learning
ability in ANFIS which differentiate it from other soft
computing methods. The reduced set of parameters has
a huge impact on the complexity and results. An
approach for SDP with most commonly used classifiers
i.e. Lazy K-Star, NB, RF, J48 and NASA datasets using
TP, FP, precision, recall and accuracy as performance
evaluation parameters is stated in [xxii]. NB is stated
best for smaller datasets and RF is stated best for larger
datasets. An empirical study is conducted and a
simplified metric set is proposed by [xxiii]. The models,
frameworks and best predicted classifiers, all failed
when seen in the perspective of cross project defect
prediction. Experiments have been performed with
static code metrics on 10 releases of open source
projects. The four classification methods i.e. NB, DT,
RF and LR have been widely used in the studies until
now [xxv]. A three way decision (3WD) based
approach for SDP considering cost on the basis of
two-stage classification and ranking approach is
proposed in [xxviii]. Ensemble learning methods and
two stage classification methods are combined to come
up with a three way decision based approach on NASA
datasets to lower the decision cost. An empirical
framework for SDP using ensemble learning methods,
statistical and machine learning techniques with the use
of android software as a dataset is proposed by [xxix].
Statistical and post-hoc analysis have been used for the
significant performance evaluation with object
oriented metrics.
 The latest trend in software defect prediction is the
use of ANN [xli, xlii] and especially deep learning
techniques [xliii, xliv]. Deep neural network (DNN) not
only deepens the layers but also extracts suitable
features for prediction. DNN is combined with genetic
algorithm (GA) for feature optimization over

considered in SDP models to detect the defects are also
focused. NB and Logistic Regression (LR) produced
best results and are concluded to be used to build a
model. Based on another perspective, it is pointed that
successful model should be built on larger datasets. In
addition to supervised learning, clustering techniques
e.g. K-means, are also used for defect prediction
resulting in maximum gain values [xxxvii]. NASA
datasets are used by [xxxviii] focusing on the issues
present in it. The importance of these datasets is
highlighted and it is added to preprocess the datasets
before using it. The research is based on unpredictable
experimental results achieved from NASA MDP. The
use of NN for software defect prediction is encouraging
[xxxix, xl] when non-linear and complicated
relationship exists between software metrics. Fifteen
Bayesian Network (BN) classifiers are used and a
comparative analysis with other machine learning
techniques is conducted to prove the efficiency of BN
among all [xiv]. Instead of using a complex BN
structure to enhance SDP other BN can be used
effectively with simpler network.

TABLE II

PERFORMANCE EVALUATION MEASURES FOR SDP

Fig. 6. Percentage Distribution of Selected Studies
over the Years

Technical Journal, University of Engineering and Technology (UET) Taxila, Pakistan Vol. 23 No. 2-2018
ISSN:1813-1786 (Print) 2313-7770 (Online)

AUC

Fall Out or FPR

Recall or Sensitivity or TPR

Precision or PPV

Specificity or TNR

F-score or F-Measure

Accuracy

 FP

 TN + FP

 TP R (T) FPR (T) Td A =

 TP

 TP + FN

 TN

 TN + FP

2(Recall * Precision)

 Recall + Precision

TP + TN

 TP + FP + TN + FN

 TP

 TP + FP

Measure Mathematical Model

Percentage of Publications per Year

P
er

ce
n

ta
ge

 o
f

P
u

b
li

ca
ti

on
s

25

20

15

10

5

0

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

68

practitioner can utilize the classification taxonomy
and can have a clear picture of the machine
learning hierarchy.

 Only Clarivate Analytics indexed impact factor
journal papers published in duration 2009-2018
are included. The earlier reviews cover
publications till 2013.

 A review of metrics, datasets, and performance
evaluation parameters used in SDP are presented.

 The role of deep learning algorithms in SDP is
focused. There is no such prior review to the best
of our knowledge that discusses the impact of deep
learning algorithms in SDP.

VI. SUMMARY OF THE REVIEW

 SDP studies based on different techniques,
approaches, models, frameworks and methods itself
are a proof that the current state of art in this research
area is still missing. No matter how deep practitioner's
research efforts are in SDP, the imbalance and diverse
nature of different factors will always be the reason of
the missing hole that exists in this field. Some
researchers considered dataset to be the most important
parameter when predicting faults in software and they
contributed to make the dataset redundant, efficient,
and concise for efficient SDP. There exists multiple
defective and non-defective public and private datasets
for practitioners. The unbalanced proportion of
defective and non-defective datasets is the problem to
consider. If number of defective modules is very higher
than the non-defective modules, then no matter how
best machine learning classifiers are used, overall poor
results will be achieved. So, researchers considered
dataset as the very important feature of any SDP
approach.
 Some researchers stated that no matter which
dataset is used, the classifier used for prediction is the
most important. Different researchers used different
classifiers belonging to statistics and machine learning
domain with different datasets. Different classifiers on
different evaluation and experimental strategies
against various large and small datasets showed
different results. Other researchers from the research
community of SDP predicted that no matter which
classifier is used against which dataset; the
performance evaluation strategy must be strong
enough to predict accurate results. The perspective of
few researchers is that input metric is the important
feature as evaluation and experimental strategies will
be performed using it. A number of machine learning
rules are also applied in the SDP research and the
results with various classifiers and rules are compared
to check the validity of the proposed scheme and
approach. Cross-project defect prediction is the
challenge for researchers and some researchers are
making their efforts in it.
 Based on our primary study of 40 most relevant

PROMISE dataset [xlv]. Another type of DNN i.e.
recurrent NN (RNN) is used by [xlvi] and the results are
compared with four NN models and five parameter
models. Traditional metrics focus on designing features
and are unable to capture the semantics of source code.
Convolutional neural networks (CNN) with control
flow graphs extracted from assembly instructions are
designed to learn software's semantic features [xlvii].
Similarly, Long Short Term Memory (LSTM) network
is used for SDP as it matches with abstract syntax tree
of the code [xlviii]. In all these studies using DNN, the
results produced are better than traditional learning
models. Table III presents the techniques that
practitioners should consider in SDP.

TABLE III

TECHNIQUES TO CONSIDER IN SDP

V. COMPARATIVE ANALYSIS OF REVIEW

ARTICLES

 Reviews conducted earlier in the domain of SDP
and machine learning are presented in this section to
elaborate the difference with our review.
 A review on SDP, considering studies published
during 1990-2009, mainly used classification trees
with only method level metrics [xlix]. Modeling
techniques in terms of cost and fault proneness for java
systems are reviewed in [vii]. Our review covers
machine learning algorithms and is not limited to java
systems. A systematic review for articles published
during 2000-2010 is conducted by [xxxvi]. Out of 208
studies, 36 are selected based on the common and
important factors for evaluation of software defects.
 The review conducted by [xxi] considered 19
studies till 2013 focusing on comparison of LR models
and machine learning algorithms. The review is limited
to 7 selected machine learning techniques; DT, BL, EL,
NN, SVM, RBL and EA. The most commonly used
metric that he found from his studies was Correlation
based feature selection.
 Papers published from 2010 to 2013 on SDP are
reviewed focusing on clustering and estimation
methods using few private datasets along with Public
datasets [xxv]. An analysis on SDP, reviewing
assumptions that are based on NB algorithm are
presented in [iii]. Meta Analysis technique for SDP is
used for review by [xvi].
 Keeping all earlier reviews in mind, our review is
different from others according to the following aspects
 A detailed classification of machine learning

techniques for SDP is presented. A new

Technical Journal, University of Engineering and Technology (UET) Taxila, Pakistan Vol. 23 No. 2-2018
ISSN:1813-1786 (Print) 2313-7770 (Online)

Review show that this research area can be improved by using

• Machine Learning Algorithms
• Frameworks, Models
• Statistical techniques
• Classification
• Clustering

• Association rules
• ANN structures
• Preprocessing of Dataset
• Comparative analysis
• Ensemble approaches

69

by researchers in this emerging research topic. The
importance of SDP has motivated many researchers to
come up with different and better approaches. Despite
of all the work done for predicting software defects, no
generic approach is available due to certain issues; two
of the most important are cross defect projection and
imbalance nature of datasets. Different techniques and
methods used in SDP can be seen in literature but
despite of their use against different metrics and
dataset, it is hard to decide which technique is better.
This research topic still needs a lot of attention to find
out the missing state of the art. Software development
and usage are amazingly increasing and complexity
with the increased number of software usage is getting
even higher. That complexity is seen in terms of defects
in software, which need to be predicted earlier. Despite
of all the work and efforts done in this research topic,
there still exists many ambiguities and a lot of research
work is needed to overcome the existing issues. More
number of studies needs to be carried out in future to
help the upcoming practitioners.

journals, it can be seen that NASA datasets are the most
widely used by the practitioners of SDP. So, journal
papers which include NASA datasets have been
considered to summarize the results presented in Table
IV. Though we tried to find out the most relevant SDP
impact factor journal papers to help the upcoming
practitioners, there still exists chance that a more
suitable and relevant study is missed out.

VII. CONCLUSION

 Based on our primary study of 40 most relevant
Clarivate Analytics indexed Journal papers, NASA
datasets have been found as the most widely used
datasets. In the perspective of software metric,
McCabe, a procedural metric, is found as the most
widely used metric. To evaluate the performance of the
proposed approach, AUC, F-measure and accuracy are
the most commonly used evaluators. Machine learning
algorithms, ensemble approaches, feature selection are
the trending techniques to enhance the SDP process. It
is clear from the review that a lot of effort is being made

Technical Journal, University of Engineering and Technology (UET) Taxila, Pakistan Vol. 23 No. 2-2018
ISSN:1813-1786 (Print) 2313-7770 (Online)

TABLE IV

SUMMARIZED RESULTS OF STUDIES THAT USED NASA DATASETS

Reference

[vi]

[viii]

[xii]

[xiii]

[xix]

[xviii]

[xxii]

[xx]

[xxvi]

[xxviii]

Proposed Approach

Multi-objective particle
swarm optimization

(MOPSO)

Ensemble learning with
Analytic Hierarchy Process

Evolutionary Decision Rules
for Subgroup Discovery

(EDER-SD)

Ensemble learning for SDP
(1-all, 1-1, RCC)

Analysis of linear regression
and machine learning

DPRAR

Analytical Approach for
SDP

APE and Enhanced APE

ANFIS for SDP

3W decision based SDP
(3WD)

Classifier

NB, NN, SVM,
C4.5, BN,
RIPPER

Trees
SimpleCart
Adaboost

SD,
Apriori

CN2-SD

RF, C4.5,
Ripper, NB

DT, SVM,
GEP, CCN,
ANN, MLR

CBA2,
Bagging, 1R,

EDER-SD

NB, J48, RF,
K-Star

W-SVM, RF

SVM, ANN

2WD

Class Level
Method level

-

Method Level
(McCabe, Halstead)

Method Level
(McCabe)

Object Oriented

Object Oriented
(CK)

Object Oriented

Method Level
(McCabe)

Method Level (McCabe)

Fault Percentage
Average

Metrics Datasets

Pc1, CM1, JM1, KC2, KC1,
KC1-CL

CM1, JM1, KC3, KC4, MC1,
MW1, PC1-4

CM1, KC1, KC2, KC3, MC2,
MW1, Pc1

CM1, JM1, KC1, KC2, KC3,
KC4, MC1, MC2, MW1,
PC1, PC2, PC3, PC4, Pc5

AR1, AR6

CM1, KC1, KC3, PC1, JM1,
MC2, MW1, PC2, PC3, Pc4

CM1, KC2, PC1, KC1

KC3, MC1, PC2, PC4

CM1, JM1, KC1, KC2, PC1

CM1, JM1, KC2, KC3, MC2,
MW1, PC1, PC2, PC3, PC4,

PC5

Results (%)

AUC
Accuracy

AUC
F-Measure
Precision
Accuracy

Recall
Accuracy

Specificity
Precision

AUC

AUC
Specificity
Sensitivity

AUC
Accuracy

Specificity
Precision

Pd

Accuracy
F-Measure

Recall
Precision

AUC
G-mean

AUC

Accuracy
F-Measure

78.72
82.02

89.98
90.88
91.95
92.63
90.32
87.94
97.68
56.08

84.35

90.65
79.55
91.3

89.75
91.89
93.21
72.45
86.27

88
86.17
85.27
85.45

93.75
90.75

85.73

80.20
87.55

70

[xiii] Z. Sun, Q. Song, and X. Zhu, "Using coding-
based ensemble learning to improve software
defect prediction," IEEE Transactions on
Systems, Man, and Cybernetics, Part C
(Appl icat ions and Reviews) , vol . 42,
pp. 1806-1817, 2012.

[xiv] K. Dejaeger, T. Verbraken, and B. Baesens,
"Toward comprehensible software fault
prediction models using bayesian network
classifiers," IEEE Transactions on Software
Engineering, vol. 39, pp. 237-257, 2013.

[xv] S. Agarwal and D. Tomar, "A feature selection
based model for software defect prediction,"
assessment, vol. 65, 2014.

[xvi] M. Shepperd, D. Bowes, and T. Hall,
"Researcher bias: The use of machine learning
in sof tware defect predic t ion," IEEE
Transactions on Software Engineering, vol. 40,
pp. 603-616, 2014.

[xvii] M. Liu, L. Miao, and D. Zhang, "Two-stage
cost-sensitive learning for software defect
prediction," IEEE Transactions on Reliability,
vol. 63, pp. 676-686, 2014.

[xviii] G. Czibula, Z. Marian, and I. G. Czibula,
"Software defect prediction using relational
association rule mining," Information Sciences,
vol. 264, pp. 260-278, 2014.

[xix] R. Malhotra, "Comparative analysis of
statistical and machine learning methods for
predicting faulty modules," Applied Soft
Computing, vol. 21, pp. 286-297, 2014.

[xx] I. H. Laradji, M. Alshayeb, and L. Ghouti,
"Software defect prediction using ensemble
learning on selected features," Information and
Software Technology, vol. 58, pp. 388-402,
2015.

[xxi] R. Malhotra, "A systematic review of machine
learning techniques for software fault
prediction," Applied Soft Computing, vol. 27,
pp. 504-518, 2015.

[xxii] R. Sathyaraj and S. Prabu, "An approach for
software fault prediction to measure the quality
of different prediction methodologies using
software metrics," Indian Journal of Science
and Technology, vol. 8, 2015.

[xxiii] P. He, B. Li, X. Liu, J. Chen, and Y. Ma, "An
empirical study on software defect prediction
with a simplified metric set," Information and
Software Technology, vol. 59, pp. 170-190,
2015.

[xxiv] S. Aleem, L. F. Capretz, and F. Ahmed,
" B e n c h m a r k i n g M a c h i n e L e a r n i n g
Technologies for Software Defect Detection,"
arXiv preprint arXiv:1506.07563, 2015.

[xxv] R. S. Wahono, "A systematic literature review of
software defect prediction: Research trends,
datasets, methods and frameworks," Journal of
Software Engineering, vol. 1, pp. 1-16, 2015.

REFERENCES

[i] C. Catal and B. Diri, "A systematic review of
software fault prediction studies," Expert
s y s t e m s w i t h a p p l i c a t i o n s , v o l . 3 6 ,
pp. 7346-7354, 2009.

[ii] S. R. Chidamber and C. F. Kemerer, "A metrics
suite for object oriented design," IEEE
Transactions on software engineering, vol. 20,
pp. 476-493, 1994.

[iii] B. Turhan and A. Bener, "Analysis of Naive
Bayes' assumptions on software fault data: An
empir ical s tudy," Data & Knowledge
Engineering, vol. 68, pp. 278-290, 2009.

[iv] C.-P. Chang, C.-P. Chu, and Y.-F. Yeh,
"Integrating in-process software defect
prediction with association mining to discover
defect pattern," Information and Software
Technology, vol. 51, pp. 375-384, 2009.

[v] Y. Zhou, B. Xu, and H. Leung, "On the ability of
complexity metrics to predict fault-prone
classes in object-oriented systems," Journal of
Systems and Software, vol. 83, pp. 660-674,
2010.

[vi] A. B. De Carvalho, A. Pozo, and S. R. Vergilio,
"A symbolic fault-prediction model based on
multiobjective particle swarm optimization,"
Journal of Systems and Software, vol. 83,
pp. 868-882, 2010.

[vii] E. Arisholm, L. C. Briand, and E. B.
Johannessen, "A systematic and comprehensive
investigation of methods to build and evaluate
fault prediction models," Journal of Systems
and Software, vol. 83, pp. 2-17, 2010.

[viii] Y. Peng, G. Kou, G. Wang, W. Wu, and Y. Shi,
"Ensemble of software defect predictors: an
AHP-based evaluation method," International
Journal of Information Technology & Decision
Making, vol. 10, pp. 187-206, 2011.

[ix] I. Chowdhury and M. Zulkernine, "Using
complexity, coupling, and cohesion metrics as
early indicators of vulnerabilities," Journal of
Systems Architecture, vol. 57, pp. 294-313,
2011.

[x] I. Alsmadi and H. Najadat, "Evaluating the
change of software fault behavior with dataset
attributes based on categorical correlation,"
Advances in Engineering Software, vol. 42,
pp. 535-546, 2011.

[xi] H. Wang, T. M. Khoshgoftaar, and A.
Napolitano, "Software measurement data
reduction using ensemble techniques,"
Neurocomputing, vol. 92, pp. 124-132, 2012.

[xii] D. Rodríguez, R. Ruiz, J. C. Riquelme, and J. S.
Aguilar–Ruiz, "Searching for rules to detect
defective modules: A subgroup discovery
approach," Information Sciences, vol. 191,
pp. 14-30, 2012.

Technical Journal, University of Engineering and Technology (UET) Taxila, Pakistan Vol. 23 No. 2-2018
ISSN:1813-1786 (Print) 2313-7770 (Online)

71

knowledge and data engineering, vol. 24,
pp. 1146-1150, 2012.

[xxxviii]D. Gray, D. Bowes, N. Davey, Y. Sun, and B.
Christianson, "Reflections on the NASA MDP
data sets," IET software, vol. 6, pp. 549-558,
2012.

[xxxix]J. Zheng, "Cost-sensitive boosting neural
networks for software defect prediction,"
Expert Systems with Applications, vol. 37,
pp. 4537-4543, 2010.

[xl] M. Benaddy and M. Wakrim, "Simulated
annealing neural network for software failure
prediction," International Journal of Software
Engineering and Its Applications, vol. 6,
pp. 35-46, 2012.

[xli] D.-L. Miholca, G. Czibula, and I. G. Czibula, "A
novel approach for software defect prediction
through hybridizing gradual relational
association rules with artificial neural
networks," Information Sciences, vol. 441,
pp. 152-170, 2018.

[xlii] R. Jayanthi and L. Florence, "Software defect
prediction techniques using metrics based on
neural network classifier," Cluster Computing,
pp. 1-12, 2018.

[xliii] J. Schmidhuber, "Deep learning in neural
networks: An overview," Neural networks,
vol. 61, pp. 85-117, 2015.

[xliv] Y. LeCun, Y. Bengio, and G. Hinton, "Deep
learning," nature, vol. 521, p. 436, 2015.

[xlv] C. Manjula and L. Florence, "Deep neural
network based hybrid approach for software
defect prediction using software metrics,"
Cluster Computing, pp. 1-17, 2018.

[xlvi] J. Wang and C. Zhang, "Software reliability
prediction using a deep learning model based on
the RNN encoder–decoder," Reliability
Engineering & System Safety, vol. 170,
pp. 73-82, 2018.

[xlvii] A. V. Phan, M. L. Nguyen, and L. T. Bui,
"Convolutional Neural Networks over Control
Flow Graphs for Software Defect Prediction,"
arXiv preprint arXiv:1802.04986, 2018.

[xlviii]H. K. Dam, T. Pham, S. W. Ng, T. Tran, J.
Grundy, A. Ghose, et al., "A deep tree-based
model for software defect prediction," arXiv
preprint arXiv:1802.00921, 2018.

[xlix] C. Catal, "Software fault prediction: A literature
review and current trends," Expert systems with
applications, vol. 38, pp. 4626-4636, 2011.

[xxvi] E. Erturk and E. A. Sezer, "A comparison of
some soft computing methods for software fault
prediction," Expert Systems with Applications,
vol. 42, pp. 1872-1879, 2015.

[xxvii] S. S. Rathore and S. Kumar, "Linear and non-
linear heterogeneous ensemble methods to
predict the number of faults in software
systems," Knowledge-Based Systems, 2016.

[xxviii]W. Li, Z. Huang, and Q. Li, "Three-way
decisions based software defect prediction,"
K n o w l e d g e - B a s e d S y s t e m s , v o l . 9 1 ,
pp. 263-274, 2016.

[xxix] R. Malhotra, "An empirical framework for
defect prediction using machine learning
techniques with Android software," Applied
Soft Computing, vol. 49, pp. 1034-1050, 2016.

[xxx] D. Ryu and J. Baik, "Effective multi-objective
naïve bayes learning for cross-project defect
prediction," Applied Soft Computing, vol. 49,
pp. 1062-1077, 2016.

[xxxi] M. Hamill and K. Goseva-Popstojanova,
"Analyzing and predicting effort associated
with finding & fixing software faults,"
Information and Software Technology, 2017.

[xxxii] D. Bowes, T. Hall, and J. Petrić, "Software
defect prediction: do different classifiers find
the same defects?," Software Quality Journal,
pp. 1-28, 2017.

[xxxiii]C. Catal and B. Diri, "Investigating the effect of
dataset size, metrics sets, and feature selection
techniques on software fault prediction
problem," Information Sciences, vol. 179,
pp. 1040-1058, 2009.

[xxxiv]A. Kalsoom, M. Maqsood, M. A. Ghazanfar, F.
Aadil, and S. Rho, "A dimensionality reduction-
based efficient software fault prediction using
Fisher linear discriminant analysis (FLDA),"
The Journal of Supercomputing, pp. 1-35, 2018.

[xxxv] Q. Song, Z. Jia, M. Shepperd, S. Ying, and J.
Liu, "A general software defect-proneness
prediction framework," IEEE Transactions on
Software Engineering, vol. 37, pp. 356-370,
2011.

[xxxvi]T. Hall, S. Beecham, D. Bowes, D. Gray, and S.
Counsell, "A systematic literature review on
fault prediction performance in software
engineering," IEEE Transactions on Software
Engineering, vol. 38, pp. 1276-1304, 2012.

[xxxvii]P. S. Bishnu and V. Bhattacherjee, "Software
fault prediction using quad tree-based k-means
clustering algorithm," IEEE Transactions on

Technical Journal, University of Engineering and Technology (UET) Taxila, Pakistan Vol. 23 No. 2-2018
ISSN:1813-1786 (Print) 2313-7770 (Online)

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9

