
the excessive local electric filed beyond the breakdown 
strength of the insulation. And gradually bridging the 
insulation gap of the insulation system is taken place 
due to the unexpected propagation of the electrical 
trees. Fig. 1 below describes schematically that how the 
PD is occurred in small cavities present in the 
insulation structure for the power apparatus. 
Techniques have been proposed for the identification of 
PD in AC electrical apparatus in ceramic and polymeric 
insulators [i-v]. For the PD in AC-XLPE cables, several 
methods have been proposed for the related diagnosis 
by applying different   sensors in the cable insulation as 
well as cable joints [vi-xi].

Fig. 1. The small cavity inside the insulating material 
responsible for PD

 In case of power cable insulation system, the 
process from PD occurrence to breakdown is shown in 
Fig. 2. 

Fig. 2. The breakdown process of insulation due to 
Partial discharge.
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Abstract-There are many advantages and applications 
of DC-XLPE cables under DC stress, it is of paramount 
importance that it is required to have some reliable 
diagnosis system to check the insulation state of cable 
insulation in order to avoid the unpredictable service 
failures of the cable system. Thus, it has been 
conceived that partial discharge diagnosis is one of the 
major tools for this purpose. However, very few 
research works have been reported regarding the PD 
diagnosis on XLPE cable under the DC stress. 
 By keeping this fact in mind in the current work, 
PD detection has been carried out using artificial 
defects introducible into DC-XLPE cable system and 
then PD signals have been analyzed by use of Chaotic 
Analysis of Partial discharge (CAPD). Afterwards, the 
application of the artificial neural network has been 
done in order to improve the recognition rate of the PD 
defects by adding power spectrum data for the first time 
in this concerned area. In this method, the power 
spectrum data of the PD signal is combined with CAPD 
data as the training data for artificial neural networks 
models. And then different NN techniques have been 
applied for the recognition of PD defects by using 
CAPD data and CAPD data combined with power 
spectrum data. As a result, better recognition rate as 
well as low mean square loss by using CAPD data 
combined with Power spectral data, also the MLP 
techniques has shown best results among all other NN 
networks. 

Keywords-Partial Discharge PD, Chaotic Analysis of 
Partial Discharge CAPD, Neural Network (NN), XLPE 
Cable.

I. INTRODUCTION

 Most of the service failure in power apparatus is 
due to the occurrence of Partial discharges from the 
presence of various natures of defects or irregularities 
existing at any place in the insulation system. A Partial 
Discharge (PD) is alocal electrical discharge caused by 
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out the values of these parameters.Due to these 
discrepancies this technique is not used for the current 
work.
 In CAPD Method the absolute value of the 
magnitude of the PD pulses and time interval between 
two consecutive PD pulses are the two main parameters 
taken into the account

II. EXPERIMENTAL TEST SETUP AND 

PARTIAL DISCHARGE DETECTION

 The complete experimental test setup is shown in 
Fig. 3. It consists of a PD free 100 kV transformer 
which produce AC signal, AC to DC rectifier circuit, 
Voltage divider to measure DC voltage, XLPE cable 
specimen, PD defect to produce PD signal, HFCT 
sensor to receive PD signals and Lab VIEW system as a 
data acquisition module.
 The voltage source is PD free (HAEFLEY 100 kV, 
1A) transformer, located inside the well shielded room 
as shown in Fig. 4, connected with the XLPE cable 
specimen including a joint. A converting system from 
AC to DC (150 kV/50 mA) through rectifier (1.5% 
ripple without load) is shown in Fig. 5.

Fig. 3. Experimental Test system diagram

Fig. 4. The XLPE cable with a PD free 100 KV 
Transformer

Fig. 5.  AC to DC rectifier circuit

 Recently the DC apparatus had been developed 
with the expectation of less transmission losses. So far, 
not many techniques have been proposed for 
diagnosing the reliability of insulation in DC power 
apparatus instead of its huge applications to the large 
power grids [xii-xiii]. The Ultra-High Frequency 
(UHF) Sensors are used to detect the PD under DC 
stress [xiv]. The diagnosis and evaluation of high 
power DC apparatus are used to detect PD which is 
accepted as a plausible diagnostic method for the status 
of insulation state [xv-xx]. The PD signals are 
generated from different insulation defects connected 
to the XLPE cable put under DC stress by using CAPD 
method and the defects patterns are proposed [xxi].
 The Fuzzy Identification System has been 
proposed in order to identify corona, internal and 
surface discharge: easy for the corona but hard to 
distinguish the internal and surface discharges. For 
that, the characteristics of internal and surface 
discharge have been expressed as a function of 
temperature and humidity as well. However, it requires 
additional facilities such as oven and humidity chamber 
to investigate the effects of temperature and humidity. 
 A statistical correlation between consecutive PD 
events is been proposed to identify PD sources under 
the DC stress, which is unable to show any specific 
pattern for the type of defects detected. Moreover 
investigation parameters of Weibull distribution could 
not distinguish the PD and noise nor differentiate the 
type of PD defects.
 These parameters obtained from each PD signal 
are mapped onto two dimensional Time- Frequency 
plane and then mapped points are clustered 
respectively in different manner making a region on 
this plane. In this way, the clustered zone could be 
separated into “Noise” group from the noses at the site 
and “PD” group for the PD signals from the defects. 
The signals in the “PD group” are used for further 
analysis enabling to make pattern recognition of the 
defects. [xxii]. 
 From the review on the precedent works, it has 
been remarked that the main problem to diagnose PD 
patterns under DC stress is to distinguish the patterns 
from the different type of defects. For this purpose, it is 
necessary to develop a more reliable and accurate PD 
pattern recognition tool and accordingly CAPD 
method has been selected. 
 The Pulse Sequential Analysis (PSA) is basically 
related to the accumulation of local space charges due 
to change in the local electric field. In PSA there is a 
strong correlation between consecutive discharge 
pulses. This means that successive PD pulses cannot be 
considered to be independent without a correlation with 
preceding discharge pulses.  Because of this in PSA the 
important parameters like applied voltage or the phase 
angle do not have the absolute value where the 
discharges occurs. This is because the local electric 
field and its effect has to be considered when finding 
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Fig. 9. Cavity imitating Void

 ii) Artificial Defect for Surface discharge 
 The Surface discharge occur along the dielectric 
interfaces where ionization propagates orthogonal to 
the applied electric field. In order to simulate the 
discharge at the surface, a solid insulation polymer disk 
is placed between high voltage and ground terminal as 
shown in Fig. 10 [xxvii, xxviii].

Fig. 10. Circular insulation disk for Surface Discharge 
showing tangential electric field

 iii) Corona discharge defect
 Corona discharge are produced as a result of high 
divergent electric field spots which are produced by use 
of a sharp steel wire intentioanlly located at the ned of 
sample cable terminal as shown in Fig. 11.

Fig. 11. Sharp steel wire located within the electric 
field of the terminal to produce Corona discharge

III. NEURAL NETWORKS

A. Process
 After getting the input feature vector of the size 1 × 
3072 obtained by three CAPD pattern data, thepattern 
recognition is carried out by adopting three different 
neural network techniques which are the Multilayer 
perceptron (MLP), Self-Organizing Feature Mapping 
(SOFM) and Recurrent Network (RN). Fig. 12 shows 
the overall process for the pattern recognition of the 
defects [xxviii-xxxix]. 

 PDs are detected through a HFCT sensor, 
clamping the ground wire as in Fig. 6, with the   
following characteristics: Its bandwidth ranges from 
hundreds of kHz to 25 MHz, sensitivity is 1 pC ± 1%. 
The data acquisition module is of National Instruments 
NI-PXI-5152 with the data rate of 2 GS/sec and having 
frequency range of 300 MHz as shown in Fig. 7.

Fig. 6. Calvus HFCT Sensor

Fig. 7. National Instruments NI-PXI-5152 System

A. Artificial Defects & Partial Discharge 
 Three main artificial defects are prepared in order 
to produce void discharge, surface discharge and 
corona discharge. Afterwards, they are connected to the 
sample cable terminal in order to produce PD for the 
experimental investigation at the laboratory.
 i) Artificial defect for Void discharge 
 The presence of void in the cable insulation is 
imitated by the cavity introduced into the epoxy as 
shown in Fig. 8in a way to have the same electric field 
distribution as that of produced in real cable. [xxiii-
xxvi] and then it has been put under applied DC voltage 
at the laboratory. Fig. 8 shows the artificial void defect 
containing cavity to imitate void and Fig. 9 is its 
schematic description.

Fig. 8. Artificial Void defect
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D. Pattern Recognition Using Recurrent Network 
(Elman Network)

 The main characteristics of a Recurrent Neural 
Network (RNN) is that it contains at least one feed-
back connection from output layer to the hidden layer, 
so that the activations can flow round in a loop. The 
learning scheme is the same as for the MLP network 
using gradient descent procedures similar to the back-
propagation algorithm used in feed-forward networks. 
Every layer is connected to the previous layer making a 
temporary memory space. This network may use their 
internal memory to process their arbitrary sequences. 
There is feedback loop around each layer except the last 
layer. Fig. 15 shows the architecture of RNN showing 
the input layer, hidden layer and the output layer along 
with the feedback loop from the output to the hidden 
layer.

Fig. 15. The architecture of Recurrent Neural 
Network 

E. Power spectrum data added with CAPD data
 To get the feature vector from the power spectrum 
data, the value of PD signals in dBm is acquired from 
the data of spectrum analyzer using Lab VIEW 
software as shown in Fig. 16. The power value 
measured for each PD signal is shown in Fig. 17, which 
is normalized within the range of 0 to 1 by applying the 
formula as shown in Eq. 4. Afterwards, a feature vector 
is also made from these values of the size 1 ×1024 as 
shown in Fig. 18.

Fig. 16. Waveform of the Spectrum Analyzer in Lab 
VIEW

Fig. 12. Flow Diagram of pattern recognition process

B. Pattern Recognition Using Multilayer Perceptron 
(MLP) Neural Networks

 The structure of MLP is shown in Fig. 13. The 
MLP system been has trained using three hidden layers 
and each layer has 50, 20 and 10 hidden nodes 
respectively to converges the system smoothly and 
quickly.
 Fig. 13 shows the total number of input vectors i.e. 
3072 along with the hidden layers and the output layer 
of MLP by showing the three type of outputs as well.

Fig. 13. Input and Output vectors for MLP Neural 
Networks

C. Pattern Recognition Using Self-Organizing 
Feature Map (SOFM) Neural Networks

 It is a two-layer network that consists of an input 
layer in a line and an output layer made of neurons in a 
two dimensional grid as shown in Fig. 14.  It uses the 
unsupervised learning in which the network has to train 
itself through its own classification without any 
external source.

Fig. 14. The architecture of SOFM Neural Network 
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 The pattern recognition process is performed by 
adopting three different neural network techniques 
including Multilayer perceptron (MLP), Self-
Organizing Feature Mapping (SOFM) and Recurrent 
Network (RN). 
 Fig. 21 shows the total number of input vectors i.e. 
1 × 4096 along with the hidden layers and the output 
layer by showing the three outputs.

Fig. 21. Input and output vectors for Neural 
Networks

F. Comparison Of Results Based On CAPD Data 
With Power Spectral Data

 The numbers training data and testing data for the 
three neural networks is summarized in Table I.

TABLE I

THE NUMBER OF TRAINING AND TESTING DATA

 The input vector and objective output vector is 
shown in Table II. When  the learning phase is 
completed, one of the three output of the defect is equal 
to '1' and the other two are equal to '0' showing the 
correct type of the defect.

TABLE II

THE OBJECTIVE OUTPUT VECTOR

G. Overall Comparison Of Recognition Rates 
 The overall comparison of MSEs of the defects 
using different NN techniques are compared for two 
cases obtained by only CAPD data and CAPD data 
combined with power spectrum data are shown in 
Table. II. The latter one is found to be lower as 
compared to that from the former one. And MLP 

Fig. 17. Power values of Frequency Spectrum [dBm]

Fig. 18. Power Spectrum feature vector

       (1)

Where
▪  = Normalised power of each PD signal* p f

▪   = Power of each PD signal [dBm] pf

▪  = Maximum power of any PD signal [dBm] pf max

 The spectral analysis is dependent on the nature of 
defects but by using this data alone, it is insufficient to 
recognize the defects producing any PD signals, 
however, if it is added with other PD signal data, a 
better recognition rate could be obtained. Thus, spectral   
feature vector is considered to be added with the feature 
vectors of CAPD data. The input vector obtained by 
combining these feature vectors is fed into the neural 
network to enhance the pattern recognition rate. For 
this purpose, the input vector is composed by adding 
the CAPD feature vector of the size 1 × 3072 and one 
feature vector of power spectrum data of the size 1 × 
1024 by making input vector of the size 1 × 4096 which 
is used as a training data for NN as shown in Fig. 19. 
The block diagram showing the overall process of 
pattern recognition is shown in Fig. 20.

Fig. 19. Input feature vector of the size 1 × 4096

Fig. 20. Block Diagram of Pattern recognition 
process
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vital insulation defects introducible into the cable 
system such as void, surface and corona. It has been 
generally conceived that their presence could give rise 
to a considerable service failure of the DC XLPE power 
cable system. By keeping this fact in mind, this work 
has been proposed to carry out an experimental 
investigation followed by the pattern recognition of the 
above defects by using CAPD method. For the latter, 
one more parameter, such as frequency spectrum data 
of the PD signal, has been additionally considered 
together with the CAPD data. Finally, the pattern 
recognition rate obtained by only CAPD data and 
CAPD data combined with spectral data has been 
compared, for which   different NN techniques have 
been applied respectively. 
 In order to acquire the PD parameters using CAPD 
method, the magnitude of the PD pulses and the time 
interval between two consecutive pulses have been 
used to represent the related PD patterns. Three 
different type of patterns have been obtained from each 
defect of which the feature vectors are extracted from 
CAPD data patterns to obtain the pattern recognition 
rates. In order to get the feature vector, the 2-
dimensional CAPD data patterns have been 
transformed into one dimensional feature-vector. Three 
feature vectors have been obtained for each type of 
defects and then are used for training data. Afterwards, 
different neural networks techniques have been applied 
for comparing the results: Multilayer perceptron 
(MLP), Self-Organizing Feature Map (SOFM) and 
Recurrent Network (RN).
 In order to improve the recognition rate of PD 
defects, the frequency spectrum data is also added with 
CAPD data. The training is again performed by using 
three feature vector obtained from each CAPD defect 
data along with one feature vector obtained from 
frequency spectrum data by using different NN 
techniques like above. 
 Finally, the recognition rates of PD defects 
iscompared for both the data. It is shown that the data 
combining CAPD and spectrum data shows much 
better performance as compared to the previous case in 
term of low mean square error and better recognition 
rates. Also, the MLP technique has shown the best 
results among the three techniques.
 In future, this idea can be applied to recognize 
different PD defects and as a result better recognition 
rate can be achieved which results in avoiding the 
power apparatus failures and to avoid heavy damages. 
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