
software market. So, the countries and the companies
are investing more and more money, effort and time for
the improvement of the software quality [2].

Without software development process knowledge,
it is quite difficult or nearly impossible to achieve
software quality. For good quality software defects,
errors or bugs should be identified at the initial stage of
the development process else it will become very
expensive to handle them if found late [3-5].

Software metrics provide the quantitative measure
of the attributes exhibited by the structure of the
software and the mathematical measure which is
sensitive to the software characteristics differences [6].
Software metrics always useful for managing and
controlling the software development process. Its
enhance the software quality i.e. they should be simple,
clear, easily understandable, definable, reasonable,
robust, valid and have some objectives. It is often
difficult to capture the complexity of the software
which is only possible by the proper use of software
metrics because they can capture its complexity which
is embedded in program structure of that software [7].
Software metrics are divided into three types: process
metrics, product metrics, and project metrics.

Software measurements are also helpful in software
configuration management or version because they let
us know about which part of the software is modified or
changed [7]. That is why software metrics are
beneficial in accessing the software's quality [8].

The objectives of this conductive study are given
as below.

· How and what metrics should be used to
measure software complexity?

· What metrics methodologies are being used
by different standards?

· Which metrics are more helpful in achieving
software quality and which are less helpful?

· Which does metrics predict software defects
at an early stage so that its quality may not
affect?

· How to manage quality in complex software?
· What are the impacts of different quality

metrics on software and its quality?

69

Abstract- Software metrics offer a quantitative basis
for predicting the software development process. In
this way, software quality can be improved very easily.
Software quality should be achieved to satisfy the
customer with decreasing the software cost and
improve there liability of the software product. In this
research, we have discussed how the software metrics
affect the quality of the software and which stages of its
development software metrics have applied. We
discussed the different software metrics and how these
metrics have an impact on software quality and
reliability. These techniques have been used for
improving the quality of software and increase the
revenue.

Keywords-Data stream mining, In-process metrics,
defect severity, Test coverage, McCabe, STREW-H,
Software Quality, In-process Measurements, Testing
Metrics, software complexity.

I. INTRODUCTION

 Two things discussed here are the software metrics
and software quality. Software metrics are the
measuring techniques for systems software, its
different parameters or different processes of that
software which provide measurements of a different
aspect of the software. The measurements are obtained
when these metrics techniques are applied so these
metrics are the measurements. Software quality is the
degree to which the software meets specified
requirements of the customer, at the agreed cost within
the agreed timescale with the efficient working and
effective deliverables. To compete with today's global
community, improvement of software development
process and software product is needed [1].

The purpose of this survey is to evaluate software
metrics and their role in improving software quality, by
studying and analyzing the history, methodologies and
the future trends of software metrics.

In software development, quality is the main issue
which customers always require. Customer
expectation for software quality is increasing with the

A Study on Software Metrics and its Impact on
Software Quality
1 2 3 J.Rashid, T.Mahmood, M.W.Nisar

1,2Computer Science Department, University of Engineering and Technology Taxila, Pakistan
3Department of Computer Science, COMSATS University Islamabad, Wah Campus, Pakistan

1junaidrashid062@gmail.com

Technical Journal, University of Engineering and Technology (UET) Taxila, Pakistan Vol. 24 No. 1-2019
ISSN:1813-1786 (Print) 2313-7770 (Online)

70

 Section 2 explain the literature review. In section 3
software metrics and its impact on software quality are
discussed. Section 4compares different software
metrics on its quality. Section 5 is discussion and
section 6 conclude the paper.

II. LITERATURE REVIEW

 History of software metrics starts from the
late1960s. In the start LOC, i.e. lines of code, the
measure was used for measuring both program quality
and the programmer's productivity. The early resource
prediction models also used lines of code or related
models, e.g. “deliverable source instruction” as key
size variable. In1961, software quality metrics were
published for the first time, i.e. a number of defects per
KLOC. It was used for measuring program
complexity” [9]. For the first time, LOC was used in
1974 and then metrics for measuring software
complexity was proposed by McCabe in 1976 [10].
 In 2000, there was a significant increase in the level
of the use of software metrics which was not there
before the 1990s. In 1976, which was the start of the use
of metrics, complexity metrics were widely used for
quality control purpose. In 1994, some attempts were
made to make software effective (i.e. Quality software)
to count the software defects, but those were not
considered as “metrics program” but were simply
regarded as “software engineering practices”. In 1996,
despite their poor size, measure LOC metrics were
routinely used as a measure of software quality. Before

st the 21 century, some researches were made to explain
that how a prediction of defects was so much important
in quality prediction, in which it was concluded that
size, measure or complexity metrics cannot provide an
accurate prediction of the software defects alone. They
also concluded that traditional statistical methods (i.e.
Regression-based methods) were inappropriate for
defect prediction.
 The requirements of the customer should be
properly understood because this is the initial step and
its chances to affect the quality are greater than any
other phase, but the complexity of this phase is quite
less. Various studies show that 25-40% defects are due
to the errors in requirement phase. In another place,
Ray Ruby study shows that incomplete requirement
specifications result in 28% of defects of the software
[9]. The above studies show that the color and the
requirements specification can improve software
quality. Table 1 shows that with the increase of

complexity software quality is decreases.
 To understand and minimize the complexity of the
software many organizations adopt some techniques or
methodologies and software metrics is one of them
which is being used by almost all organizations. These
are the measurement techniques used to check if the
software is functional, reliable, usable, efficient,
portable, and maintainable which tells about the extent
of its quality. They are used for assessment of the
quality of the software during and after its
development. Their usage will provide quantitative
measures for making good decisions about the software
quality [11]. Metrics are also used to detect code
redundancy, which can be removed by applies
refactoring techniques [8].

III. SOFTWARE METRICS AND ITS IMPACT ON

SOFTWARE QUALITY

Software metrics are further classified into three
categories as shown in Fig. 1.

Fig.1. Software metrics

· Product metrics – These are the characteristics of
a product, such as its performance, design, size,
quality level, and complexity.
· Process metrics – These metrics are used to make
better software development and maintenance
processes.
· Project metrics – These metrics describe the
project execution and its characteristics.

As our center is to see the effect of programming
measurements on quality, we will center around
programming quality measurements. Programming
quality measurements are additionally sorted into item
quality, in-process quality, and upkeep, quality as
venture quality measurements (estimate, cost,
calendar, abilities, and authoritative structure) is less
related than the item and process quality.

Along with product and process, maintenance is the
main factor affecting the software's quality.

Technical Journal, University of Engineering and Technology (UET) Taxila, Pakistan Vol. 24 No. 1-2019
ISSN:1813-1786 (Print) 2313-7770 (Online)

Complexity

0.5

1

2

2

2.5

3.5

Quality

4.3

4

3.5

3

2.5

3.5

Phase 1
Phase 2
Phase 3
Phase 4
Phase 5
Phase 6

TABLE I QUALITY VS COMPLEXITY

71

 For an early indication of an external measure of
defect density, what is easy to measure, internal in-
processing methods?
 Based on Nagappan's study [19], they propose
STREW-H method which uses a suite of internal, in-
process metrics which estimates defect density metric
suite. Some metrics are not as applicable to functional
languages, because of different language paradigms
e.g. LOC [20] is a most commonly used metric which
easily gathers with either paradigm, where class
structure metrics are not relevant to size measurements.
In his study, STREW-J was used to start.
 The best proposed in-process metric method was
STREW-H. The proposed metric suite is refined by
deleting and adding metrics until it is felt that a minimal
set of metrics needed to accurately explain and predict
product defect density has achieved [21].
 These methods are helpful for software engineers
to detect the defect very soon and remove these defects.

C. Maintenance quality metrics
 Several software metrics techniques are used to
achieve quality through its maintenance and
performance. Functional metrics measure the amount
of business functionality by measuring the size
(Through LOC and FP) and budget [22].Periodicity
metrics are used for higher planning, scheduling, and
periodic protection sports. where making plans
develops procedures and scheduling evaluates the
supply of the sources required for maintenance of the
software project in the exact time [23]. In 2010,
Meselhy introduced two impartial periodicity assets
because of preservation, the pre-planned protection and
failure repair Preventive [24].OEE metrics or
equipment performance metrics: In 1988, Nakajima
launched the concept of the total productive
maintenance (TPM) which provides a quantitative
metric called “Overall Equipment Effectiveness
(OEE)” which measures the productivity of
manufacturing equipment [25]. It is the most popular
equipment performance indicator which is measured
by different production losses [26]. In 2006. Marquez
defined maintenance process as the series of action at
different stages [27]. The maintenance process has two
parts efficiency analysis and effective analysis. The
first part identifies the suitable procedure and the
second part helps to detect the important problems and
locate their potential solution. The researchers have
defined eight phases to accomplish this assessment as:

1. Factory performance.
2. Software quality.
3. Effective study for solutions.
4. Maintenance performance analysis.
5. The action plan.
6. Action plain implementing.
7. Action monitor.
8. Adoption of plans [24].

In 2002, according to Pearson, these three-quality
metrics are further subdivided into four metrics each as
shown below in Table 2.

A. Product quality metrics
 What's powerful product exceptional metrics that
are getting used to enhance the product great?

Records movement mining strategies are used to
are expecting software program effects on the premise
of its source code metrics [12]. Building predictive
models are of excellent benefit. Constructing it using
records flow mining strategies is better because it
doesn't have big everlasting garage requirements for
simplest stores as a quick and limited quantity of build
exchange units that is due to large garage requirements
[13-14].

The consulted research has offered a solution for
encoding software program satisfactory metrics as
records streams. In the case of Jazz after execution of
software program build, the facts streams could be
supplied, the student copies this sort of facts movement
that's taken from ancient information [15]. The model
which generated from software program build
histories, we will run the real-time facts [13] [16].

The consequences have shown that data stream
mining strategies preserve lots capacity as the Jazz
surroundings. Predictive models may be up to date and
encoded into the IDE as a tool while construct is
executed. real-time remarks can be provided to the
contributors through this device through the progress
of code in relative to the metrics expected and extracted
build outcome. For a team to communicate effectively
with the successful generation of bold, this tool will
provide real-time insight for good communication.
Data stream mining has applications in ATM
transactions and safety, web searches, traffic systems,
managing the network and networks/data [17-18].

B. In-process metrics

Technical Journal, University of Engineering and Technology (UET) Taxila, Pakistan Vol. 24 No. 1-2019
ISSN:1813-1786 (Print) 2313-7770 (Online)

TABLE II

TYPES OF SOFTWARE QUALITY METRICS

Metrics

Maintenance

quality metrics

Fixture backlog

and backlog

management

index

Fixture backlog

and backlog

management

index

Percent delinquent

fixes

Fix quality

Quality
In-process
quality metrics
Defect Density
During Machine
Testing

Defect Arrival
Pattern During
Machine Testing

Phase-Based
Defect Removal
Pattern
Defect Removal
Effectiveness

Product quality
metrics
Mean time to failure

Defect density

Customer problems

Customer
satisfaction.

Software

Technical Journal, University of Engineering and Technology (UET) Taxila, Pakistan Vol. 24 No. 1-2019
ISSN:1813-1786 (Print) 2313-7770 (Online)

 There is a s t rong dependency between
maintenance performance metrics (MPMs) and the
maintenance performance indicators (MPIs). Table 3
shows the product quality metrics, in process quality
and maintenance quality metrics.
 The recent studies show that companies derived
metrics as four further categories:
· Quality Metrics
· Productivity and Schedule Metrics
· Assessment Metrics
· Business and Corporate Metrics
 From these four categories, we will see what
techniques and metrics are further used in quality
metrics, as our purpose is to focus on achieving quality
using metrics. Quality metrics are further divided into
the metrics shown below in figure 2:

Fig.2. Types of software metrics

D. Customer satisfaction
Which model defines customer satisfaction factor

and what are the suitable measurable variables in this
model?

Customer satisfaction is an important factor for the
success of different companies and is the way to
achieve quality products [28]. Seven hypothetical
variables define (ECSI) European customer
satisfaction index model as shown in figure 3.

Fig.3. Model ECSI (European customer satisfaction
index

 The different hypothetical variables are discussed
in [29] [30].
1. Image
2. Customer Expectation
3. Perceived Quality of Service/Product.
4. Perceived Value
5. Customer Satisfaction
6. Customer Complaints
7. Loyalty

4

Solution

Encoding software

quality metrics as data

streams are used.

Best proposed in-

process metric method

for predicting defect

density is STREW-H.

The literature review of

(MPIs) maintenance

performance indicators

is divided into five

categories as shown in

the techniques.

Result

Data stream mining

techniques hold much

potential as Jazz

environment

The strew-h method

provides early warnings

which are helpful for the

early prediction of defect

density.

There is a strong

dependency between

maintenance

performance metrics

(MPMs) and the

maintenance

performance indicators

(MPIs).

 Technique

· Data stream mining

 techniques

· Building predictive

 models

· The STREW-J

 technique was used to

 start.

· STREW-H technique.

· Functional metrics.

· Periodicity metrics.

· Maintenance process

 metrics.

· Equipment performance

 metrics

· (OEE) metrics.

TABLE III COMPARISON OF METRICS

Problem
What are effective
PQM which is being
used to improve the
product quality?

What is IPM for
measuring defect
density?

What metrics
techniques are used
to achieve quality
through its
maintenance and
performance and how?

Product quality
metrics

In-process quality
metrics

Maintenance quality
metrics

Metrics Type

72

73

 Defects per function point range below 2.00. They
vary with CMM levels for other factors [31].

The bad fixes percentage is calculated as given in
[33]. Equation 2 describes the bad fixes percentage.

F. Defect removal
How to reap excessive defect elimination

efficiency?
The elimination metrics illness defects are

determined and eliminated earlier than the product is
brought to the consumer. So, to obtain an excessive
disorder elimination performance formal inspection
and formal trying out are finished [31]. table five shows
the proportion of defects removed before the product
delivery to the clients [32].

G. Delivered defects
 Defects are the variety of supply in keeping with
FP or LOC at the time of delivery of the product
requirements disorder, design disorder, code illness,
documentation/online assist defect, defect added by
means of fixes, and so on. In result of the above study,
table 6 shows the number of each of these defects and
its average found.

Figure 5 shows the increase and the decrease of the
delivered defects during different phases of the system
development life cycle, i.e. requirements, design,
coding, documents and “bad fixes”.

H. Defects Severities
 Defects severity level is the degree of end user's
business impact which affects the quality of the
software. This severity level of the defects can be

These variables are used in the calculation of the
Customer Satisfaction Index (CSI) as shown in
equation 1 below.

The above equation1 measures the results of
customer satisfaction and the indexes of the variables
and is based on how the customer evaluates the product
and its services, therefore, proved to be the important
metric for achieving software quality by measuring the
value of customer satisfaction which is an important
factor for the quality product [30]. The results of the
calculations can be used by the client for decision
making related to the purchase of goods and services. It
is also used by the firm as it creates the firm
development strategy [29].

E. Defect Quantities
What are the possible software defect quantities

and how to detect those defects?
Defect quantities are the bugs, errors or the defects

observed in all artifacts of the system development life
cycle, i.e. requirements, design, code, testing
documents and secondary defects or “bad fixes” [31].
Table 4 shows the average number of defects found in
software projects [32].

 Figure 4 shows the increase and the decrease of the
defects found during different phases of the system
development life cycle, i.e. requirements, design,
coding, documents and “bad fixes”.

Fig.4. Defect potential chart

Technical Journal, University of Engineering and Technology (UET) Taxila, Pakistan Vol. 24 No. 1-2019
ISSN:1813-1786 (Print) 2313-7770 (Online)

Defect Potentials

1.00

1.25

0.75

0.60

0.40

5.00

Defect Origin
Requirements

Design
Coding

Documents
Bad fixes/Secondary Defects

Total

TABLE IV
 DEFECT ORIGIN AND DEFECT POTENTIALS

Defect removal efficiency

77%

85%

95%

80%

70%

85%

Defect Origin
Requirements

Design
Coding

Documents
Bad fixes/Secondary Defects

Total

TABLE V
 DEFECT ORIGIN AND REMOVAL

Delivered defects

0.23

0.09

0.19

0.12

0.12

0.75

Defect Origin
Requirements

Design
Coding

Documents
Bad fixes/Secondary Defects

Total

TABLE VI
 DEFECT ORIGIN AND DELIVERED

74

· Fetal defects
· Major defects
· Minor defects
· Cosmetic defects
 Defect severity can be measured using the defect
severity index, a metric used to measure the quality of
the product directly. Four levels are maintained to
check defects severity i.e.

Level 4: Critical, level 3: Serious, level 2: Medium
and level 1: Low

From [33], a study shows the defect severity index
as shown in equation 3.

Table 4, table 5 and table 6 shows that if the average
defect potential is 5.00 errors or defects per FP i.e.
function point and the average percentage of defect
removal efficiency is 85%, then the total number of the
delivered defects will be around 0.75 defects per FP i.e.
function point. The summary of these tables giving
some concluding remarks.
1) The largest number of defects are more likely to

occur (Table 4)
2) Defect removal efficiency is not very good i.e.,

observed 85% where it should be about 95%.
(Table 5)

3) Delivered defects originate of different types from
multiple sources (Table 6)
Figure 6 shows a comparison of defect potentials

and delivered defects.

Fig.5. Delivered defects chart

determined by software testing. Business impact =
effect on the end user x frequency of occurrence

High defect severity => low product quality

 By determining defect severity, we can minimize it
to enhance product quality. Every defect contains its
severity level which can be low, medium or high. It is
important to measure the severity of the product
because it helps
· In determining the efficiency of the test process.
· In deciding the priority of defects
· In making the bug tracking process effective
· In making release decisions
Classification of defect severity:

Technical Journal, University of Engineering and Technology (UET) Taxila, Pakistan Vol. 24 No. 1-2019
ISSN:1813-1786 (Print) 2313-7770 (Online)

Fig.6. Chart showing defect potentials and delivered defects in FP throughout the SDLC

75

solving it. Availability (AVAIL): As described
above, it is the probability of the software or the
system to be present or available when it is needed
[35].

Different software reliability metrics in different
phases of SDLC are
· Requirement reliability metrics
· Design & code reliability metrics
· Testing reliability metrics [37].
Figure8 shows the software reliability metrics.

Fig.8. Software reliability metrics

 The achieving of software reliability is the key task
of any company. It doesn't only tell about the current
reliability of the software but also forecasts about its
future reliability. Thus, using various measurement
techniques of the software mentioned here in the paper,
to eliminate any error or fault of the software process,
that is how it improves the reliability of the software
product [34-35].

Service Time/ Response time/ defect turnaround
time

Turnaround time or the response time for defect
fixes, by the level of severity [38]. To measure the
turnaround time following equation 4 is used.

Software complexity:

Software complexity is an essential factor which
should always be taken into consideration along with
software parameters. Software cost increases with the
increase of the complexity and the decrease of the
reliability [39].

The research in [40-41] shows that software
complexity metric is further categories as shown in
figure 9 below.

Software Reliability & Availability
 What is software reliability metrics and how they
are helpful in measuring reliability when software sizes
have no uniform definition and it is very difficult to
understand the nature of the software?

Software reliability and availability are the main
factors which cannot be ignored because they are
responsible for gaining the customer's satisfaction and
is also difficult to measure [34].

Reliability is the measure of the probability of the
software that for how long it will work and will not fail.
The unreliability of the software is caused due to the
failure or the bugs or the design faults. The measure of
software reliability the reliability metrics are used.
They express the reliability of the software product
quantitatively. Which metric is to be used is decided on
the basis of the type of the system to which it is applied.
The quality of software depends on the factors
including software reliability model and software
quality metrics [35].

Figure7 shows the software quality improvement
factors.

Fig.7.Software quality improvement factors

 Without having a good understanding of the
software's nature, it is quite difficult to measure the
software's reliability. Therefore, instead of measuring
the reliability directly, some reliability metrics are used
which reflects reliability related characteristics of the
software product [35]. These are discussed below.
· Mean time to failure (MTTF): it's miles the time

interval among successive failures [36].
· Meantime among failures (MTBF): it is the

aggregate of the 2 metrics MTTF and MTTR to
offer MTBF.

· The price of the prevalence of a failure (ROCOF):
The call suggests it's for the number of screw-ups
going on in line with unit time which is also known
as failure depth metric.

· Mean time to repair (MTTR): This metric degree
the time taken to monitoring the mistake and then

Technical Journal, University of Engineering and Technology (UET) Taxila, Pakistan Vol. 24 No. 1-2019
ISSN:1813-1786 (Print) 2313-7770 (Online)

76

 Table 8 shows the three-complexity metrics and
their sub-categories along with their complexity levels
[41-46].

 For an item, oriented complexity metrics as C&ok
technique and mood are getting used for the closing two
decades [47]. it is impossible to make present-day
systems without object-orientated design and object-
oriented programming. The OO design carries all
properties for all small and large initiatives which
complements software exceptional [48]. In [49] shows
that they build a unified software program complexity
metric which relies on different dimensions, domains,
and factors of software program size. The following
goals are useful for software.

1.� It gives a dimension which permits contrast of the
unique relative complexities of two unique packages
2.� It returns the space among the two arguments via
taking values from an issue and measuring the gap.

 It estimates the productiveness of the people in
software tasks to obtain indirect measures [49].
3. A set of quality KPIs was selected carefully with
broad acceptance in the development team to improve
the quality of complex software projects [50].

Test Coverage
It is the measure of the number of tests performed

by the set of the tests. Use a fully automated Test
Coverage Analysis Tool for measuring test coverage
[51].

Fig.9. Software complexity framework

 There are some metrics to calculate the complexity
of the software. The study of different complexity
metrics, the metrics which are used in the development
life cycle are shown below in Table 7.

 Figure 10 shows the Software complexity
categories.

Fig. 10. Software complexity categories

Technical Journal, University of Engineering and Technology (UET) Taxila, Pakistan Vol. 24 No. 1-2019
ISSN:1813-1786 (Print) 2313-7770 (Online)

Phases

Design, coding

Deployment,

Coding, deployment,

Maintenance

Design, coding,

Design, deployment,

Design

Design

Reliability
Metrics
McCabe
Halstead

Line of code
Error count
OOP class

metrics
Software
package
metrics

Cohesion
Coupling

TABLE VII
 COMPLEXITY METRICS AND THEIR PHASES

TABLE VIII
METRICS COMPLEXITY

Complexity
High-Complexity
Low-Complexity

High-Complexity
High-Complexity

High-Complexity

High-Complexity

High-Complexity
High-Complexity

High-Complexity
Low-Complexity

High-Complexity
High-Complexity

Low-Complexity

Low-Complexity

Low-Complexity
Low-Complexity

Metric Name
Source Line of Code
Comment Percentage

[42] [43] [44]
Halstead Metrics

Maccabees Cyclomatic
Complexity

Weighted Method Per
Class [45]

Depth of Inheritance
Tree

Number Of Children
Coupling Between

Object Class
Response Of A Class
Lack Of Cohesion In

Methods
Method Hiding Factor
Attribute Hiding Factor

Method Inheritance
Factor

Attribute Inheritance
Factor

Polymorphism Factor
Coupling Factor

.

Static metrics

Object-
Oriented-
Metrics

Metrics of
object-
oriented
design
(MOOD)

Category

77

The purpose of this paper is to observe the impact of
different software metrics on the quality of software i.e.
software quality metrics impact. Therefore, here we
compare these metrics in table 11 below, to see whether
their impact is low or high and what are the reasons for
these impacts.

IV. COMPARISON OF SOFTWARE METRICS

ON ITS QUALITY

 Software quality is an essential thing for any
organization and its depend that how the customers are
satisfied with software product [53]. Software quality
is maintained with some standards and procedures of a
software organization. Several organization follows
different standards for software quality. The software
quality product also depends on the effective
requirement engineering process [54] and other
applications [55].

V. DISCUSSION

The metrics described in the paper are used for
providing accurate reports on the daily or weekly basis.
These metrics proved to be very useful for the
assessment of project status and its quality. ECSI model
should be followed to fulfill customer satisfaction.
Reliability of the product should always be taken in the
concern, for that purpose, reliability metric should be

Cost of Quality:
Principles of Quality, Costs, illustrates a technique

for analyzing the quality, cost by breaking down these
costs [52]. The cost of quality shown in equation 5.

Quality cost = Conformance cost
+ nonconformance (5)

Where,
Cost of conformance = Appraisal cost + prevention cost
And,
Cost of Nonconformance = Cost of internal failure +
Cost of external failure
From the above formula, a study was performed to
calculate the cost of quality as shown in table 9.

 By the recent study performed by Anuradha K, she
applied different test metrics to check the quality of the
software.

Table 10 gives an overview of the methodologies
discussed in this paper for above-discussed software
quality metrics.

Technical Journal, University of Engineering and Technology (UET) Taxila, Pakistan Vol. 24 No. 1-2019
ISSN:1813-1786 (Print) 2313-7770 (Online)

TABLE IX
MEASURE OF THE TOTAL COST OF QUALITY

Non-formal
testing

$0

$752,500

$752,500

Automated
testing

$70,000

$437,500

$507,500

Manual
testing

$82,500

$302,500

$385,000

.

Conformance
cost
Nonconformance
cost
The total
cost of
Quality

Cost of

quality

TABLE X
METHODOLOGIES FOR SOFTWARE QUALITY

METRIC

METHODOLOGIES DISCUSSED IN
PAPER

(ECSI) European customer satisfaction
index model
Customer satisfaction index

Defect potentials found by the origin of
defects circa 2009 in terms of defects per
FP
Defect removal efficiency found by the
origin of defects circa 2009
Defects delivered found by the origin of
defects circa 2009 in terms of defects per
FP
Defect severity index=

S�(Severity Index x No Of Valid Defects)

 --

.

Customer
satisfaction

Defect
Quantities

Defect removal

Delivered
defects

Defect
Severities

QUALITY

METRICS

Total Number of Valid Defects

.·���Mean time to failure (MTTF)

· Mean time between failures (MTBF)

· The rate of occurrence of a failure (ROCOF)

· Mean time to repair (MTTR)

· Availability (AVAIL)

· Requirement reliability metrics

· Design & code reliability metrics

· Testing reliability metrics

Defect Turnaround time =

(Actual time was taken to fix the

defect) / (Planned time is taken to fix the

defect)

Static complexity metrics

Object-oriented complexity metrics (OO

metric) and

Metrics for object-oriented design

(MOOD)

Test Coverage=

(Number of coverage items exercised/

Total number of coverage items) x 100

Cost of quality=

Cost of conformance + Cost of

nonconformance

Software

Reliability &

Availability

Service

Time/Response

time

Software

complexity

Test Coverage

Cost of Quality

RESULT
Data stream mining techniques
are better to use in product
quality metrics because it
holds much potential as the
Jazz environment

The strew-h method provides
early warnings which are
helpful for the early prediction
of defect density.

High dependency on the
performance of metrics.

Customer satisfaction is
an important factor for
the success of different
companies and is the
way to achieve quality
products

The largest number of
defects are more likely
to occur

Defects removal
efficiency is not very
good i.e., observed 85%
where it should be about
95%.

Delivered defects
originate of different
types from multiple
sources. They keep on
writing.

IMPACT
Data mining has a
high impact
compared to the
jazz environment.

The strew-h method
has a high impact on
software quality as
compare to STREW-J
technique.
The techniques for
MPI, all prove to be
good to measure
maintenance for
quality. So have a
high impact on
software quality.

ECSI model helps in
determining product
quality through
determining
customer’s
satisfaction. So, give
a high impact on
software quality.

Defect quantities
have a high impact
on software quality
as it evolves through
the development life
cycle and predicts the
occurrence of a
number of defects for
different phases.

High impact as high
defect removal
efficiency leads to a
quality product.

Low impact on
software quality as
Large no of
delivering defects
gives low product
quality

TABLE XI
COMPARISON OF METRIC IMPACT ON SOFTWARE QUALITY

SR #
01

02

03

04

05

06

07

REF #
[xii-
xviii]

[xix-
xxi]

[xxv]

[xxviii-
xxx]

[xxxi-
xxxiii]

[xxxi-
xxxii]

[xxxi-
xxxii]

PROBLEM
What are effective
PQM which is
being used to improve
the product quality?

What is IPM for
measuring defect
density?

What metrics
techniques are used
to achieve quality
through its
maintenance and
performance and
how?

Which model
defines customer
satisfaction factor
and what are the
suitable measurable
variables in this
model?

What are the
possible software
defect quantities
and how to detect
those defects?

How to achieve a
high defect removal
efficiency and what
is its impact on
software quality?

How to measure
defect density of
delivered defects
and what is its
impact on software
quality?

SOLUTION
Encoding software
quality metrics as data
streams are used.

The proposed in process
metric method for
predicting defect
density in STREW-H

The literature review
of (MPIs) maintenance
performance indicators
is divided into five
categories as shown
in the techniques.

ESCI model defines
Image Customer,
Expectation Perceived,
Quality of Service/
Product, Perceived
Value, Customer
Satisfaction,
Customer Complaints
Loyalty

Defect quantities are
the bugs errors or the
defects observed in all
artifacts of the system
development life cycle
i.e. requirements,
design, code, testing
documents and
secondary defects or
“bad fixes”. These
measured in terms
of function points.

To achieve a high
defect removal
efficiency formal
inspection and
formal testing
are done.

Defect density
metric gives the
defect density
measure.

TECHNIQUE

· Data stream
 mining techniques

· Building predictive
 models

· The STREW - J
 technique was
 used to start

· STREW-H
 technique.
The techniques are
given below:

· Functional metrics.

· Periodicity metrics.

· Maintenance process
 metrics.

· Equipment performance
 metrics

· (OEE) metrics.

(ECSI) European customer
satisfaction index model
defines seven hypothetical
variables as given in the
solution. Generally, the
customer satisfaction
index is used as shown
in formula 8 below.
Formula 8:

Defect potentials
found by Origin of
Defects Circa 2009 in
terms of defects per FP
as shown in formula 9.
Formula 9:
Bad Fix Defect%=
Total Number of Valid
Defects
-------*100[%]
Number of Bad Fix
Defects

Defect Removal Efficiency
found by Origin of Defects
Circa 2009 in terms of
defects per FP

Defect density metrics
Defect density=
Defects/ unit size
Where unit size is in
term of a number of
lines of code.

Technical Journal, University of Engineering and Technology (UET) Taxila, Pakistan Vol. 24 No. 1-2019
ISSN:1813-1786 (Print) 2313-7770 (Online)

78

RESULT
High defect severity =>
low product quality

Using these reliability
techniques we can
eliminate any error or
fault of the software
process that is how it
improves the reliability
of the software product.

Can only be calculated
when the fix is
successfully delivered.

Complexity increase =>
reliability decreases.

Coverage can lead away
from the real goal of
testing.

Predicts the budget.

IMPACT
Low impact on
product quality as
High defect severity
=> low product
quality.

High impact as it
helps in improving
software so
improves product
quality.

Has a high impact on
product quality.

Quality decrease as
complexity increases,
so it has a low
impact on software
quality.

It has a low impact
on product quality.

Has a high impact on
product quality.

SR #
08

09

10

11

12

13

REF #
[xxxiii]

[xxxiv-
xxxvii]

[xxxv
iii]

[xxxix-
-x1v]

[l1]

[l2]

PROBLEM
How to measure
defect severity level
and what is its
impact on software
quality?

What are the impact
of defect software
reliability and
availability measure
on the quality of
software? How is it
calculated?

What is the impact
of defect turnaround
time on the quality
of software? How is
it calculated?

What is the impact
of software
complexity on its
quality? Which
complexity metrics
have high impact?

How to measure test
coverage? What is
its impact on
software quality?

How to measure
the cost of quality?
What is its impact
on software quality?

SOLUTION
This severity level
of the defects can
be determined by
software testing.
The Defect Severity
Index is used for
calculating defect
severity.

Metrics shown in
techniques are used
to measure software
reliability and
availability.

It is measured by
calculating the actual
and planned time
for fixing defects.

The set of quality KPIs
was selected carefully
with broad acceptance
in the development
team to improve the
quality of complex
software projects.

Use a fully automated
Test Coverage Analysis
Tool

We can calculate it
through the cost of
conformance and
nonconformance.

TECHNIQUE
The formula 10 shows
that.
Formula 10:
Defect Severity Index
=

S (Severity Index x

No of Valid Defects)

Total Number of Valid
 Defects

Mean time to failure
(MTTF) Mean time
between failures (MTBF)
The rate of occurrence
of failure (ROCOF)
Mean time to repair
(MTTR)
Availability (AVAIL)

The formula 11 shows.
Formula 11:
Defect Turnaround
time =
(Actual time was taken
to fix the defect)/
(Planned time is taken
to fix the defect)

Static complexity
metrics Object-
oriented complexity
metrics (OO metric)
and Metrics for object-
oriented design (MOOD)
Which includes many
like Maccabees Cyclomatic
Complexity = E-N+P
and Halstead Metrics

Test Coverage=
(Number of coverage
items exercised a /
Total number of
coverage items) x 100

Cost of quality=
Cost of conformance +
Cost of nonconformance
Where Cost of
conformance =
Appraisal cost +
prevention cost
and
Cost of nonconformance=
Cost of internal failure
+ Cost of external failure

Technical Journal, University of Engineering and Technology (UET) Taxila, Pakistan Vol. 24 No. 1-2019
ISSN:1813-1786 (Print) 2313-7770 (Online)

79

[7] K. Stroggylos, D. Spinellis , “Refactoring--Does It
Improve Software Quality? ”, InSoftware Quality,
2007. WoSQ'07: ICSE Workshops 2007. Fifth
International Workshop on 2007 May 20 (pp. 10-
10). IEEE.

[8] T. Mens, S. Demeyer. “Future trends in software
evolution metrics”. InProceedings of the 4th
international workshop on Principles of software
evolution 2001 Sep 10 (pp. 83-86). ACM.

[9] NE. Fenton,M. Neil, “Software metrics:
successes, failures and new directions”, Journal of
Systems and Software. 1999 Jul 1;47(2-3):149-57.

[10] T. Honglei ,S. Wei ,Z. Yanan , “ The research on
software metrics and software complexity
metrics”, InComputer Science-Technology and
Applications, 2009. IFCSTA'09. International
Forum on 2009 Dec 25 (Vol. 1, pp. 131-136).
IEEE.

[11] Z. Markov, I. Russell, “An introduction to the
WEKA data mining system”, ACM SIGCSE
Bulletin 38 (3) (2006) 367–368.

[12] Z. Markov, I. Russell, “An introduction to the
WEKA data mining system”, ACM SIGCSE
Bulletin 38 (3) (2006) 367–368.

[13] B. Pfahringer, G. Holmes, R. Kirkby, “Handling
numeric attributes in hoeffding trees”, in T. Washio
et al. (Eds.), Advances in Knowledge Discovery
and Data Mining, Springer, Berlin Heidelberg,
2008, pp. 296–307.

[14] A. Bifet, “Adaptive learning and mining for data
streams and frequent patterns”, ACM SIGKDD
Explorations Newsletter 11 (1) (2009) 55–56.

[15] J. Finlay, A.M. Connor, R. Pears, “Mining
Software Metrics from Jazz”, in Software
Engineering Research, Management, and
Applications, 2011 9th International Conference
on, 2011.

[16] K.J. Cios et al., “Data Mining: A Knowledge
Discovery Approach”, Springer, Publishing
Company, Incorporated, 2010.

[17] J. Finlay, R. Pears, A. M. Connor:” Data stream
mining for predicting software build outcomes
using source code metrics”, Journal of Information
and software technology, 2013.

[18] G. Hulten, L. Spencer, P. Domingos, “Mining
time-changing data streams”, in Proceedings of the
Seventh ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, ACM,
San Francisco, California, 2001, pp. 97–106

[19] N. Nagappan , L. Williams , M. A Vouk,, “Towards
a metric suite for early software reliability
assessment” InInternational Symposium on
Software Reliability Engineering, FastAbstract,
Denver, CO 2003 Nov (pp. 238-239).

[20] TM. Khoshgoftaar, JC. Munson, “The lines of
code metric as a predictor of program faults: A
critical analysis”, InComputer Software and
Applications Conference, 1990. COMPSAC 90.

used in different phases of development of the software
product, i.e. McCabe, Halstead, a line of code, error
count, Object-oriented programming class metrics,
software package metrics, cohesion and coupling
metrics. MTTF and MTTR metrics are should also be
used to measure the availability and reliability of the
software product. Object-oriented complexity metrics
prove to be very good in predicting complexity fast and,
therefore, these metrics enhance software quality.

VI. CONCLUSION

The paper presents the results of an initial
methodical attempt to calculate build success or failure
of the software product by using source code metrics.

Data stream mining technique is better for
measuring product quality.

The automated tools are currently being created to
gather the information and provide it to developers
automatically while they are still coding and can
inexpensively make actions to correct the mistakes.
The initial viability analysis was performed by using a
subset of metrics from the STREW-H for this purpose.

The complexity metrics are the best among all three
categories of complexity metrics.

It is best to use the quality metrics obtained from the
advanced study to improve the software's quality.

To increase the quality of the software product
reliability metrics, complexity metrics, defect removal
efficiency, etc. help in gaining quality & customer
satisfaction model index is best for gaining customer
satisfaction which leads to the quality of the software
product.

REFERENCES
[1] L. Lazic, N.Mastorakis,“Cost-effective software

tes t metr ics” , WSEAS Transact ions on
Computers. 2008 Jun 1;7(6):599-619.

[2] B. Kitchenham ,SL. Pfleeger SL, ”Software
quality: the elusive target [special issues section”,
IEEE Software. 1996 Jan;13(1):12-21.

[3] N. Nagappan ,L. Williams , M. Vouk ,J. Osborne
,“Early estimation of software quality using in-
process testing metrics: a controlled case study”,
InACM SIGSOFT Software Engineering Notes
2005 May 17 (Vol. 30, No. 4, pp. 1-7). ACM.

[4] BW. Boehm,“Software engineering economics”,
Englewood Cliffs (NJ): Prentice-hall; 1981 Oct
22.

[5] “J.E. Gaffney, JR, Metrics in software quality
assurance”, ACM '81 Proceedings of the ACM '81
conference, 1 January 1981, Pages 126-130.

[6] W. Li,H. Delugach ,“Software metrics and
application domain complexity”, InSoftware
Engineering Conference, 1997. Asia Pacific... and
International Computer Science Conference 1997.
APSEC'97 and ICSC'97. Proceedings 1997 Dec 2
(pp. 513-514). IEEE.

Technical Journal, University of Engineering and Technology (UET) Taxila, Pakistan Vol. 24 No. 1-2019
ISSN:1813-1786 (Print) 2313-7770 (Online)

80

and reliability metrics”, International Journal of
A d v a n c e d R e s e a r c h i n C o m p u t e r a n d
C o m m u n i c a t i o n E n g i n e e r i n g . 2 0 1 2
Dec;1(10):808-15.

[38] K. Sakthi, and R. Baskaran. "Defect analysis and
prevention for software process quality
improvement." International Journal of Computer
Applications 8.7 (2010).

[39] S. Yu , S. Zhou S, “ A survey on metric of software
complexity”, InInformation Management and
Engineering (ICIME), 2010 The 2nd IEEE
International Conference on 2010 Apr 16 (pp. 352-
356). IEEE.

[40] C. F. Kemmerer,“Software complexity and
software maintenance: A survey of empirical
research”, Annals of Software Engineering. 1995
Dec 1;1(1):1-22.

[41] R. Jiang, "Research and Measurement of Software
Complexity Based on Wu Li, Shili, Renli (WSR)
and Information Entropy." Entropy 17.4 (2015):
2094-2116.

[42] M. Lorenz, and J. Kidd, “Object-oriented software
metrics: a practical guide”, Prentice-Hall, Inc.,
1994.

[43] R. C. Sharble and S. C. Samuel , "The object-
oriented brewery: a comparison of two object-
oriented development methods." ACM SIGSOFT
Software Engineering Notes 18.2 (1993): 60-73.

[44] K. A. Ferreira,M. A. Bigonha , R. S. Bigonha , L. F.
Mendes , H.C. Almeida ,“Identifying thresholds
for object-oriented software metrics”, Journal of
Systems and Software. 2012 Feb 1;85(2):244-57.

[45] A. H. Watson, and D. R. Wallace. "Structured
testing: A testing methodology using the
cyclomatic complexity metric, "NIST (National
Institute of Standards and Technology), special
Publication 500.235 (1996): 1-114.

[46] C. Chawla, G. Kaur “Comparative Study of the
Software Metrics for the complexity and
Maintainability of Software Development.”,
(IJACSA) International Journal of Advanced
Computer Science and Applications, Vol. 4, No. 9,
2013.

[47] T. Honglei , S. Wei, and Z. Yanan. "The research on
software metrics and software complexity
metrics." Computer Science-Technology and
Applications, 2009. IFCSTA'09. International
Forum on. Vol. 1. IEEE, 2009.

[48] D. Arora , P. Khanna , A. Tripathi , S. Sharma ,
“Software quality estimation through object
oriented design metrics”, Int. J. Computer Science
and Network Security. 2011 Apr;11(4):100-4.

[49] R. R. Gonzalez, “A Unified Metric of Software
Complexity: Measuring Productivity, Quality, and
Value”, 1995, 29:17-37.

[50] K. Schüler , R. Trogus , M. Feilkas , T. Kinnen ,
“Managing Product Quality in Complex Software
Development Projects”, InProceedings of the

 Proceedings., Fourteenth Annual International
1990 Oct (pp. 408-413). IEEE.

[21] M. Sherriff,L. Williams,M. Vouk , “Using In-
Process Metrics to Predict Defect Density in
Haskell Programs”, InFast Abstract, International
Symposium on Software Reliability Engineering,
St. Malo, France 2004 Nov 2.

[22] R. Meli:, “Functional Metrics: Problems and
Possible Solutions.”, 2013.

[23] J. Kumar, V. Soni,G. Agnihotri, “Maintenance
performance metrics for manufacturing industry”,
International Journal of Research in Engineering
and Technology. 2013;2(2):136-42.

[24] K. T. Meselhy , W,.H. ElMaraghy ,“A periodicity
metric for assessing maintenance strategies”,
CIRP Journal of Manufacturing Science and
Technology. 2010 Jan 1;3(2):135-41.

[25] S. Nakajima, “Introduction to TPM: Total
P roduc t ive Main tenance (p reven ta t ive
maintenance series)”, Hardcover. ISBN 0-91529-
923-2. 1988.

[26] P. Muchiri , L. Pintelon ,“Performance
measurement us ing overa l l equ ipment
effectiveness (OEE): literature review and
practical application discussion”, International
journal of production research. 2008 Jul
1;46(13):3517-35.

[27] A. C. Marquez,J. N. Gupta, “Contemporary
maintenance management: process, framework
and supporting pillars”, Omega. 2006 Jun
1;34(3):313-26.

[28] V. Chalupský, “Marketingový audit spokojenosti
zákazníků.”, VUTIUM; 2001.

[29] K. Ryglová, K., and I. Vajčnerová. "Potential for
utilization of the European customer satisfaction
index in Agra-business." 2005 (4): 161–167.

[30] F. Dařena F, A. Motyčka , R. Malo, “Customer
sat isfact ion index calculat ion service”,
InConference 2008 Sep (Vol. 151, pp. 24-26).

[31] C. Jones, “ Measuring defect potentials and defect
removal efficiency” , The Journal of Defense
Software Engineering. 2008 Jun;21(6):11-3.

[32] C. Jones “Software Quality and Software
Economics”, October 19, 2009.

[33] L. LAZIC, "Software Quality & Testing Metrics."
management 4: 6.

[34] G. K. Saha , “ Software Reliability Issues: Concept
Map”, IEEE Reliability Society 2009 Annual
Technology Report.

[35] G. Kaur G, K. Bahl, “Software reliability, metrics,
reliability improvement using agile process”,
IJISET-International Journal of Innovative
Science, Engineering & Technology. 2014
May;1(3):143-7.

[36] P. Ramachandran P, SV. Adve , P. Bose, J.A Rivers,
J. Srinivasan ,“Metrics for lifetime reliability”,
2006.

[37] V. Tiwari,R. K. Pandey, “Open source software

81

Technical Journal, University of Engineering and Technology (UET) Taxila, Pakistan Vol. 24 No. 1-2019
ISSN:1813-1786 (Print) 2313-7770 (Online)

14(8), p.99.
[54] M. Khan, J. Rashid, M.W. Nisar, 2016. A CMMI

Complaint Requirement Development Life Cycle.
International Journal of Computer Science and
Information Security, 14(9), p.1000.

[55] J. Rashid, W. Mehmood, and M. W. Nisar, "A
Survey of Model Comparison Strategies and
Techniques in Model Driven Engineering,"
International Journal of Software Engineering and
Technology (IJSET), vol. 1, pp. 165-176, 2016.

Embedded World Conference 2015.
[51] H. Zhu,P.A Hall , M. H. May , “Software unit test

coverage and adequacy”. Acm computing surveys
(csur). 1997 Dec 1;29(4):366-427.

[52] R. Black, "Investing in Software Testing: The Cost
of Software Quality." Rex Black Consulting
(2000).

[53] J. Rashid, M. W. Nisar, 2016. How to Improve a
Software Quality Assurance in Software
Development-A Survey. International Journal of
Computer Science and Information Security,

82

Technical Journal, University of Engineering and Technology (UET) Taxila, Pakistan Vol. 24 No. 1-2019
ISSN:1813-1786 (Print) 2313-7770 (Online)

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14

